opt = TestOptions().parse() # For testing the neural networks, manually edit/add options below opt.gan_mode = 'none' # 'wgangp', 'lsgan', 'vanilla', 'none' opt.n_downsample = 2 # Downsample times opt.n_blocks = 2 # Numebr of residual blocks opt.first_kernel = 5 # The filter size of the first convolutional layer in encoder # Set the input dataset opt.dataset_mode = 'CIFAR10' # Current dataset: CIFAR10, CelebA # Set up the training procedure opt.batchSize = 1 # batch size opt.activation = 'sigmoid' # The output activation function at the last layer in the decoder opt.norm_EG = 'batch' if opt.dataset_mode == 'CIFAR10': opt.dataroot = './data' opt.size = 32 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) dataset = torch.utils.data.DataLoader(testset,
# For testing the neural networks, manually edit/add options below opt.gan_mode = 'none' # 'wgangp', 'lsgan', 'vanilla', 'none' opt.C_channel = 16 # The output channel number of encoder (Important: it controls the rate) opt.n_downsample= 2 # Downsample times opt.n_blocks = 2 # Numebr of residual blocks opt.first_kernel = 5 # The filter size of the first convolutional layer in encoder # Set the input dataset opt.dataset_mode = 'CIFAR10' # Current dataset: CIFAR10, CelebA # Set up the training procedure opt.batchSize = 1 # batch size opt.activation = 'tanh' # The output activation function at the last layer in the decoder opt.norm_EG = 'batch' if opt.dataset_mode == 'CIFAR10': opt.dataroot='./data' opt.size = 32 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) dataset = torch.utils.data.DataLoader(testset, batch_size=opt.batchSize, shuffle=False, num_workers=2) dataset_size = len(dataset) print('#training images = %d' % dataset_size)