def test_get_primal(self): self.assertEqual(self.var.primal, None) model = Model(problem=gurobipy.read(TESTMODELPATH)) model.optimize() for i, j in zip([var.primal for var in model.variables], [ 0.8739215069684306, -16.023526143167608, 16.023526143167604, -14.71613956874283, 14.71613956874283, 4.959984944574658, 4.959984944574657, 4.959984944574658, 3.1162689467973905e-29, 2.926716099010601e-29, 0.0, 0.0, -6.112235045340358e-30, -5.6659435396316186e-30, 0.0, -4.922925402711085e-29, 0.0, 9.282532599166613, 0.0, 6.00724957535033, 6.007249575350331, 6.00724957535033, -5.064375661482091, 1.7581774441067828, 0.0, 7.477381962160285, 0.0, 0.22346172933182767, 45.514009774517454, 8.39, 0.0, 6.007249575350331, 0.0, -4.541857463865631, 0.0, 5.064375661482091, 0.0, 0.0, 2.504309470368734, 0.0, 0.0, -22.809833310204958, 22.809833310204958, 7.477381962160285, 7.477381962160285, 1.1814980932459636, 1.496983757261567, -0.0, 0.0, 4.860861146496815, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.064375661482091, 0.0, 5.064375661482091, 0.0, 0.0, 1.496983757261567, 10.000000000000002, -10.0, 0.0, 0.0, 0.0, 0.0, 0.0, -29.175827135565804, 43.598985311997524, 29.175827135565804, 0.0, 0.0, 0.0, -1.2332237321082153e-29, 3.2148950476847613, 38.53460965051542, 5.064375661482091, 0.0, -1.2812714099825612e-29, -1.1331887079263237e-29, 17.530865429786694, 0.0, 0.0, 0.0, 4.765319193197458, -4.765319193197457, 21.79949265599876, -21.79949265599876, -3.2148950476847613, 0.0, -2.281503094067127, 2.6784818505075303, 0.0 ]): self.assertAlmostEqual(i, j)
def test_gurobi_create_empty_model(self): model = Model() self.assertEqual(model.problem.getAttr('NumVars'), 0) self.assertEqual(model.problem.getAttr('NumConstrs'), 0) self.assertEqual(model.name, None) self.assertEqual(model.problem.getAttr('ModelName'), '') model = Model(name="empty_problem") self.assertEqual(model.problem.getAttr('ModelName'), 'empty_problem')
def test_netlib(netlib_tar_path=os.path.join(os.path.dirname(__file__), 'data/netlib_lp_problems.tar.gz')): """ Test netlib with glpk interface """ tar = tarfile.open(netlib_tar_path) model_paths_in_tar = glob.fnmatch.filter(tar.getnames(), '*.SIF') for model_path_in_tar in model_paths_in_tar: print(model_path_in_tar) netlib_id = os.path.basename(model_path_in_tar).replace('.SIF', '') # TODO: get the following problems to work # E226 seems to be a MPS related problem, see http://lists.gnu.org/archive/html/bug-glpk/2003-01/msg00003.html if netlib_id in ('AGG', 'E226', 'SCSD6', 'BLEND', 'DFL001', 'FORPLAN', 'GFRD-PNC', 'SIERRA'): # def test_skip(netlib_id): # raise SkipTest('Skipping netlib problem %s ...' % netlib_id) # test_skip(netlib_id) # class TestWeirdNetlibProblems(unittest.TestCase): # @unittest.skip('Skipping netlib problem') # def test_fail(): # pass continue # TODO: For now, test only models that are covered by the final netlib results else: if netlib_id not in THE_FINAL_NETLIB_RESULTS.keys(): continue fhandle = tar.extractfile(model_path_in_tar) problem = read_netlib_sif_gurobi(fhandle) model = Model(problem=problem) model.configuration.presolve = True model.configuration.verbosity = 3 func = partial(check_dimensions, problem, model) func.description = "test_netlib_check_dimensions_%s (%s)" % ( netlib_id, os.path.basename(str(__file__))) yield func model.optimize() if model.status == 'optimal': model_objval = model.objective.value else: raise Exception('No optimal solution found for netlib model %s' % netlib_id) func = partial(check_objval, problem, model_objval) func.description = "test_netlib_check_objective_value_%s (%s)" % ( netlib_id, os.path.basename(str(__file__))) yield func func = partial(check_objval_against_the_final_netlib_results, netlib_id, model_objval) func.description = "test_netlib_check_objective_value__against_the_final_netlib_results_%s (%s)" % ( netlib_id, os.path.basename(str(__file__))) yield func
def test_qp_convex(self): model = Model(problem=gurobipy.read(CONVEX_QP_PATH)) self.assertEqual(len(model.variables), 651) self.assertEqual(len(model.constraints), 501) for constraint in model.constraints: self.assertTrue( constraint.is_Linear, "%s should be linear" % (str(constraint.expression))) self.assertFalse( constraint.is_Quadratic, "%s should not be quadratic" % (str(constraint.expression))) self.assertTrue(model.objective.is_Quadratic, "objective should be quadratic") self.assertFalse(model.objective.is_Linear, "objective should not be linear") model.optimize() self.assertAlmostEqual(model.objective.value, 32.2291282)
def test_changing_variable_names_is_reflected_in_the_solver(self): model = Model(problem=gurobipy.read(TESTMODELPATH)) for i, variable in enumerate(model.variables): print(variable._internal_variable is not None) print(variable.problem.name) variable.name = "var" + str(i) print(variable.problem.name) print(variable.name) print(variable._internal_variable is not None) self.assertEqual(variable.name, "var" + str(i)) self.assertEqual(variable._internal_variable.getAttr('VarName'), "var" + str(i))
class ObjectiveTestCase(abstract_test_cases.AbstractObjectiveTestCase): interface = gurobi_interface def setUp(self): problem = gurobipy.read(TESTMODELPATH) self.model = Model(problem=problem) self.obj = self.model.objective def test_change_direction(self): self.obj.direction = "min" self.assertEqual(self.obj.direction, "min") self.assertEqual(self.model.problem.getAttr('ModelSense'), gurobipy.GRB.MAXIMIZE) self.model.update() self.assertEqual(self.model.problem.getAttr('ModelSense'), gurobipy.GRB.MINIMIZE) self.obj.direction = "max" self.assertEqual(self.obj.direction, "max") self.assertEqual(self.model.problem.getAttr('ModelSense'), gurobipy.GRB.MINIMIZE) self.model.update() self.assertEqual(self.model.problem.getAttr('ModelSense'), gurobipy.GRB.MAXIMIZE)
def load_problem(mps_file): prob_tmp_file = tempfile.mktemp(suffix='.mps') with open(prob_tmp_file, 'wb') as tmp_handle: f = gzip.open(mps_file, 'rb') tmp_handle.write(f.read()) f.close() problem = gurobipy.read(prob_tmp_file) model = Model(problem=problem) model.configuration.presolve = True model.configuration.verbosity = 3 model.configuration.timeout = 60 * 9 return problem, model
def test_qp_non_convex(self): model = Model(problem=gurobipy.read(NONCONVEX_QP_PATH)) self.assertEqual(len(model.variables), 31) self.assertEqual(len(model.constraints), 1) for constraint in model.constraints: self.assertTrue( constraint.is_Linear, "%s should be linear" % (str(constraint.expression))) self.assertFalse( constraint.is_Quadratic, "%s should not be quadratic" % (str(constraint.expression))) self.assertTrue(model.objective.is_Quadratic, "objective should be quadratic") self.assertFalse(model.objective.is_Linear, "objective should not be linear") self.assertRaises(GurobiError, model.optimize)
def setUp(self): problem = gurobipy.read(TESTMODELPATH) self.model = Model(problem=problem) self.obj = self.model.objective
def test_netlib(netlib_tar_path=os.path.join(os.path.dirname(__file__), 'data/netlib_lp_problems.tar.gz')): """ Test netlib with glpk interface """ tar = tarfile.open(netlib_tar_path) model_paths_in_tar = glob.fnmatch.filter(tar.getnames(), '*.SIF') for model_path_in_tar in model_paths_in_tar: print(model_path_in_tar) netlib_id = os.path.basename(model_path_in_tar).replace('.SIF', '') # TODO: get the following problems to work # E226 seems to be a MPS related problem, see http://lists.gnu.org/archive/html/bug-glpk/2003-01/msg00003.html if netlib_id in ('AGG', 'E226', 'SCSD6', 'BLEND', 'DFL001', 'FORPLAN', 'GFRD-PNC', 'SIERRA'): # def test_skip(netlib_id): # raise SkipTest('Skipping netlib problem %s ...' % netlib_id) # test_skip(netlib_id) # class TestWeirdNetlibProblems(unittest.TestCase): # @unittest.skip('Skipping netlib problem') # def test_fail(): # pass continue # TODO: For now, test only models that are covered by the final netlib results else: if netlib_id not in THE_FINAL_NETLIB_RESULTS.keys(): continue fhandle = tar.extractfile(model_path_in_tar) problem = read_netlib_sif_gurobi(fhandle) model = Model(problem=problem) model.configuration.presolve = True model.configuration.verbosity = 3 func = partial(check_dimensions, problem, model) func.description = "test_netlib_check_dimensions_%s (%s)" % ( netlib_id, os.path.basename(str(__file__))) yield func model.optimize() if model.status == 'optimal': model_objval = model.objective.value else: raise Exception('No optimal solution found for netlib model %s' % netlib_id) func = partial(check_objval, problem, model_objval) func.description = "test_netlib_check_objective_value_%s (%s)" % ( netlib_id, os.path.basename(str(__file__))) yield func func = partial(check_objval_against_the_final_netlib_results, netlib_id, model_objval) func.description = "test_netlib_check_objective_value__against_the_final_netlib_results_%s (%s)" % ( netlib_id, os.path.basename(str(__file__))) yield func if os.getenv('CI', 'false') != 'true': # check that a cloned model also gives the correct result model = Model.clone(model, use_json=False, use_lp=False) model.optimize() if model.status == 'optimal': model_objval = model.objective.value else: raise Exception('No optimal solution found for netlib model %s' % netlib_id) func = partial(check_objval_against_the_final_netlib_results, netlib_id, model_objval) func.description = "test_netlib_check_objective_value__against_the_final_netlib_results_after_cloning_%s (%s)" % ( netlib_id, os.path.basename(str(__file__))) yield func
def setUp(self): self.model = Model() self.x1 = Variable("x1", lb=0) self.x2 = Variable("x2", lb=0) self.c1 = Constraint(self.x1 + self.x2, lb=1) self.model.add([self.x1, self.x2, self.c1])
class QuadraticProgrammingTestCase( abstract_test_cases.AbstractQuadraticProgrammingTestCase): def setUp(self): self.model = Model() self.x1 = Variable("x1", lb=0) self.x2 = Variable("x2", lb=0) self.c1 = Constraint(self.x1 + self.x2, lb=1) self.model.add([self.x1, self.x2, self.c1]) def test_convex_obj(self): model = self.model obj = Objective(self.x1**2 + self.x2**2, direction="min") model.objective = obj model.optimize() self.assertAlmostEqual(model.objective.value, 0.5) self.assertAlmostEqual(self.x1.primal, 0.5) self.assertAlmostEqual(self.x2.primal, 0.5) obj_2 = Objective(self.x1, direction="min") model.objective = obj_2 model.optimize() self.assertAlmostEqual(model.objective.value, 0.0) self.assertAlmostEqual(self.x1.primal, 0.0) self.assertGreaterEqual(self.x2.primal, 1.0) # According to documentation and mailing lists Gurobi cannot solve non-convex QP # However version 7.0 solves this fine. Skipping for now @unittest.skip("Can gurobi solve non-convex QP?") def test_non_convex_obj(self): model = self.model obj = Objective(self.x1 * self.x2, direction="min") model.objective = obj self.assertRaises(GurobiError, model.optimize) obj_2 = Objective(self.x1, direction="min") model.objective = obj_2 model.optimize() self.assertAlmostEqual(model.objective.value, 0.0) self.assertAlmostEqual(self.x1.primal, 0.0) self.assertGreaterEqual(self.x2.primal, 1.0) def test_qp_convex(self): model = Model(problem=gurobipy.read(CONVEX_QP_PATH)) self.assertEqual(len(model.variables), 651) self.assertEqual(len(model.constraints), 501) for constraint in model.constraints: self.assertTrue( constraint.is_Linear, "%s should be linear" % (str(constraint.expression))) self.assertFalse( constraint.is_Quadratic, "%s should not be quadratic" % (str(constraint.expression))) self.assertTrue(model.objective.is_Quadratic, "objective should be quadratic") self.assertFalse(model.objective.is_Linear, "objective should not be linear") model.optimize() self.assertAlmostEqual(model.objective.value, 32.2291282) @unittest.skip("Takes a very long time") def test_qp_non_convex(self): model = Model(problem=gurobipy.read(NONCONVEX_QP_PATH)) self.assertEqual(len(model.variables), 31) self.assertEqual(len(model.constraints), 1) for constraint in model.constraints: self.assertTrue( constraint.is_Linear, "%s should be linear" % (str(constraint.expression))) self.assertFalse( constraint.is_Quadratic, "%s should not be quadratic" % (str(constraint.expression))) self.assertTrue(model.objective.is_Quadratic, "objective should be quadratic") self.assertFalse(model.objective.is_Linear, "objective should not be linear") self.assertRaises(GurobiError, model.optimize) def test_quadratic_objective_expression(self): objective = Objective(self.x1**2 + self.x2**2, direction="min") self.model.objective = objective self.assertEqual((self.model.objective.expression - (self.x1**2 + self.x2**2)).simplify(), 0)