def main(opts): # Create the data loader loader = sunnerData.DataLoader(sunnerData.ImageDataset( root=[[opts.path]], transform=transforms.Compose([ sunnertransforms.Resize((opts.resolution, opts.resolution)), sunnertransforms.ToTensor(), sunnertransforms.ToFloat(), sunnertransforms.Transpose(sunnertransforms.BHWC2BCHW), sunnertransforms.Normalize(), ])), batch_size=opts.batch_size, shuffle=True, drop_last=True ) # Create the model start_epoch = 0 G = G_stylegan2(fmap_base=opts.fmap_base, resolution=opts.resolution, mapping_layers=opts.mapping_layers, opts=opts, return_dlatents=True) D = D_stylegan2(fmap_base=opts.fmap_base, resolution=opts.resolution, structure='resnet') # Load the pre-trained weight if os.path.exists(opts.resume): INFO("Load the pre-trained weight!") state = torch.load(opts.resume) G.load_state_dict(state['G']) D.load_state_dict(state['D']) start_epoch = state['start_epoch'] else: INFO("Pre-trained weight cannot load successfully, train from scratch!") # Multi-GPU support if torch.cuda.device_count() > 1: INFO("Multiple GPU:" + str(torch.cuda.device_count()) + "\t GPUs") G = torch.nn.DataParallel(G) D = torch.nn.DataParallel(D) G.to(opts.device) D.to(opts.device) # Create the criterion, optimizer and scheduler lr_D = 0.0015 lr_G = 0.0015 optim_D = torch.optim.Adam(D.parameters(), lr=lr_D, betas=(0.9, 0.999)) # g_mapping has 100x lower learning rate params_G = [{"params": G.g_synthesis.parameters()}, {"params": G.g_mapping.parameters(), "lr": lr_G * 0.01}] optim_G = torch.optim.Adam(params_G, lr=lr_G, betas=(0.9, 0.999)) scheduler_D = optim.lr_scheduler.ExponentialLR(optim_D, gamma=0.99) scheduler_G = optim.lr_scheduler.ExponentialLR(optim_G, gamma=0.99) # Train fix_z = torch.randn([opts.batch_size, 512]).to(opts.device) softplus = torch.nn.Softplus() Loss_D_list = [0.0] Loss_G_list = [0.0] for ep in range(start_epoch, opts.epoch): bar = tqdm(loader) loss_D_list = [] loss_G_list = [] for i, (real_img,) in enumerate(bar): real_img = real_img.to(opts.device) latents = torch.randn([real_img.size(0), 512]).to(opts.device) # ======================================================================================================= # (1) Update D network: D_logistic_r1(default) # ======================================================================================================= # Compute adversarial loss toward discriminator real_img = real_img.to(opts.device) real_logit = D(real_img) fake_img, fake_dlatent = G(latents) fake_logit = D(fake_img.detach()) d_loss = softplus(fake_logit) d_loss = d_loss + softplus(-real_logit) # original r1_penalty = D_logistic_r1(real_img.detach(), D) d_loss = (d_loss + r1_penalty).mean() # lite # d_loss = d_loss.mean() loss_D_list.append(d_loss.mean().item()) # Update discriminator optim_D.zero_grad() d_loss.backward() optim_D.step() # ======================================================================================================= # (2) Update G network: G_logistic_ns_pathreg(default) # ======================================================================================================= # if i % CRITIC_ITER == 0: G.zero_grad() fake_scores_out = D(fake_img) _g_loss = softplus(-fake_scores_out) # Compute |J*y|. # pl_noise = (torch.randn(fake_img.shape) / np.sqrt(fake_img.shape[2] * fake_img.shape[3])).to(fake_img.device) # pl_grads = grad(torch.sum(fake_img * pl_noise), fake_dlatent, retain_graph=True)[0] # pl_lengths = torch.sqrt(torch.sum(torch.sum(torch.mul(pl_grads, pl_grads), dim=2), dim=1)) # pl_mean = PL_DECAY * torch.sum(pl_lengths) # # pl_penalty = torch.mul(pl_lengths - pl_mean, pl_lengths - pl_mean) # reg = pl_penalty * PL_WEIGHT # # # original # g_loss = (_g_loss + reg).mean() # lite g_loss = _g_loss.mean() loss_G_list.append(g_loss.mean().item()) # Update generator g_loss.backward(retain_graph=True) optim_G.step() # Output training stats bar.set_description( "Epoch {} [{}, {}] [G]: {} [D]: {}".format(ep, i + 1, len(loader), loss_G_list[-1], loss_D_list[-1])) # Save the result Loss_G_list.append(np.mean(loss_G_list)) Loss_D_list.append(np.mean(loss_D_list)) # Check how the generator is doing by saving G's output on fixed_noise with torch.no_grad(): fake_img = G(fix_z)[0].detach().cpu() save_image(fake_img, os.path.join(opts.det, 'images', str(ep) + '.png'), nrow=4, normalize=True) # Save model state = { 'G': G.state_dict(), 'D': D.state_dict(), 'Loss_G': Loss_G_list, 'Loss_D': Loss_D_list, 'start_epoch': ep, } torch.save(state, os.path.join(opts.det, 'models', 'latest.pth')) scheduler_D.step() scheduler_G.step() # Plot the total loss curve Loss_D_list = Loss_D_list[1:] Loss_G_list = Loss_G_list[1:] plotLossCurve(opts, Loss_D_list, Loss_G_list)
def main(opts): # Create the data loader loader = sunnerData.DataLoader( sunnerData.ImageDataset(root=[[opts.path]], transform=transforms.Compose([ sunnertransforms.Resize((1024, 1024)), sunnertransforms.ToTensor(), sunnertransforms.ToFloat(), sunnertransforms.Transpose( sunnertransforms.BHWC2BCHW), sunnertransforms.Normalize(), ])), batch_size=opts.batch_size, shuffle=True, ) # Create the model start_epoch = 0 G = StyleGenerator() D = StyleDiscriminator() # Load the pre-trained weight if os.path.exists(opts.resume): INFO("Load the pre-trained weight!") state = torch.load(opts.resume) G.load_state_dict(state['G']) D.load_state_dict(state['D']) start_epoch = state['start_epoch'] else: INFO( "Pre-trained weight cannot load successfully, train from scratch!") # Multi-GPU support if torch.cuda.device_count() > 1: INFO("Multiple GPU:" + str(torch.cuda.device_count()) + "\t GPUs") G = nn.DataParallel(G) D = nn.DataParallel(D) G.to(opts.device) D.to(opts.device) # Create the criterion, optimizer and scheduler optim_D = optim.Adam(D.parameters(), lr=0.00001, betas=(0.5, 0.999)) optim_G = optim.Adam(G.parameters(), lr=0.00001, betas=(0.5, 0.999)) scheduler_D = optim.lr_scheduler.ExponentialLR(optim_D, gamma=0.99) scheduler_G = optim.lr_scheduler.ExponentialLR(optim_G, gamma=0.99) # Train fix_z = torch.randn([opts.batch_size, 512]).to(opts.device) softplus = nn.Softplus() Loss_D_list = [0.0] Loss_G_list = [0.0] for ep in range(start_epoch, opts.epoch): bar = tqdm(loader) loss_D_list = [] loss_G_list = [] for i, (real_img, ) in enumerate(bar): # ======================================================================================================= # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) # ======================================================================================================= # Compute adversarial loss toward discriminator D.zero_grad() real_img = real_img.to(opts.device) real_logit = D(real_img) fake_img = G(torch.randn([real_img.size(0), 512]).to(opts.device)) fake_logit = D(fake_img.detach()) d_loss = softplus(fake_logit).mean() d_loss = d_loss + softplus(-real_logit).mean() if opts.r1_gamma != 0.0: r1_penalty = R1Penalty(real_img.detach(), D) d_loss = d_loss + r1_penalty * (opts.r1_gamma * 0.5) if opts.r2_gamma != 0.0: r2_penalty = R2Penalty(fake_img.detach(), D) d_loss = d_loss + r2_penalty * (opts.r2_gamma * 0.5) loss_D_list.append(d_loss.item()) # Update discriminator d_loss.backward() optim_D.step() # ======================================================================================================= # (2) Update G network: maximize log(D(G(z))) # ======================================================================================================= if i % CRITIC_ITER == 0: G.zero_grad() fake_logit = D(fake_img) g_loss = softplus(-fake_logit).mean() loss_G_list.append(g_loss.item()) # Update generator g_loss.backward() optim_G.step() # Output training stats bar.set_description("Epoch {} [{}, {}] [G]: {} [D]: {}".format( ep, i + 1, len(loader), loss_G_list[-1], loss_D_list[-1])) # Save the result Loss_G_list.append(np.mean(loss_G_list)) Loss_D_list.append(np.mean(loss_D_list)) # Check how the generator is doing by saving G's output on fixed_noise with torch.no_grad(): fake_img = G(fix_z).detach().cpu() save_image(fake_img, os.path.join(opts.det, 'images', str(ep) + '.png'), nrow=4, normalize=True) # Save model state = { 'G': G.state_dict(), 'D': D.state_dict(), 'Loss_G': Loss_G_list, 'Loss_D': Loss_D_list, 'start_epoch': ep, } torch.save(state, os.path.join(opts.det, 'models', 'latest.pth')) scheduler_D.step() scheduler_G.step() # Plot the total loss curve Loss_D_list = Loss_D_list[1:] Loss_G_list = Loss_G_list[1:] plotLossCurve(opts, Loss_D_list, Loss_G_list)
def main(opts): # Create the data loader # loader = sunnerData.DataLoader(sunnerData.ImageDataset( # root=[[opts.path]], # transforms=transforms.Compose([ # sunnertransforms.Resize((1024, 1024)), # sunnertransforms.ToTensor(), # sunnertransforms.ToFloat(), # #sunnertransforms.Transpose(sunnertransforms.BHWC2BCHW), # sunnertransforms.Normalize(), # ])), # batch_size=opts.batch_size, # shuffle=True, # ) loader = data_loader(opts.path) device = fluid.CUDAPlace(0) if opts.device == 'GPU' else fluid.CPUPlace(0) with fluid.dygraph.guard(device): # Create the model start_epoch = 0 G = StyleGenerator() D = StyleDiscriminator() # Load the pre-trained weight if os.path.exists(opts.resume): INFO("Load the pre-trained weight!") #state = fluid.dygraph.load_dygraph(opts.resume) state = load_checkpoint(opts.resume) G.load_dict(state['G']) D.load_dict(state['D']) start_epoch = state['start_epoch'] else: INFO( "Pre-trained weight cannot load successfully, train from scratch!" ) # # Multi-GPU support # if torch.cuda.device_count() > 1: # INFO("Multiple GPU:" + str(torch.cuda.device_count()) + "\t GPUs") # G = nn.DataParallel(G) # D = nn.DataParallel(D) scheduler_D = exponential_decay(learning_rate=0.00001, decay_steps=1000, decay_rate=0.99) scheduler_G = exponential_decay(learning_rate=0.00001, decay_steps=1000, decay_rate=0.99) optim_D = optim.Adam(parameter_list=D.parameters(), learning_rate=scheduler_D) optim_G = optim.Adam(parameter_list=G.parameters(), learning_rate=scheduler_G) # Train fix_z = np.random.randn(opts.batch_size, 512) fix_z = dygraph.to_variable(fix_z) softplus = SoftPlus() Loss_D_list = [0.0] Loss_G_list = [0.0] D.train() G.train() for ep in range(start_epoch, opts.epoch): bar = tqdm(loader()) loss_D_list = [] loss_G_list = [] for i, data in enumerate(bar): # ======================================================================================================= # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) # ======================================================================================================= # Compute adversarial loss toward discriminator real_img = np.array([item for item in data], dtype='float32').reshape( (-1, 3, 1024, 1024)) D.clear_gradients() real_img = dygraph.to_variable(real_img) real_logit = D(real_img) z = np.float32(np.random.randn(real_img.shape[0], 512)) fake_img = G(dygraph.to_variable(z)) fake_logit = D(fake_img) d_loss = layers.mean(softplus(fake_logit)) d_loss = d_loss + layers.mean(softplus(-real_logit)) if opts.r1_gamma != 0.0: r1_penalty = R1Penalty(real_img, D) d_loss = d_loss + r1_penalty * (opts.r1_gamma * 0.5) if opts.r2_gamma != 0.0: r2_penalty = R2Penalty(fake_img, D) d_loss = d_loss + r2_penalty * (opts.r2_gamma * 0.5) loss_D_list.append(d_loss.numpy()) # Update discriminator d_loss.backward() optim_D.minimize(d_loss) # ======================================================================================================= # (2) Update G network: maximize log(D(G(z))) # ======================================================================================================= if i % CRITIC_ITER == 0: G.clear_gradients() fake_logit = D(fake_img.detach()) g_loss = layers.mean(softplus(-fake_logit)) #print("g_loss",g_loss) loss_G_list.append(g_loss.numpy()) # Update generator g_loss.backward() optim_G.minimize(g_loss) # Output training stats bar.set_description("Epoch {} [{}, {}] [G]: {} [D]: {}".format( ep, i + 1, 52000, loss_G_list[-1], loss_D_list[-1])) # Save the result Loss_G_list.append(np.mean(loss_G_list)) Loss_D_list.append(np.mean(loss_D_list)) # Check how the generator is doing by saving G's output on fixed_noise G.eval() #fake_img = G(fix_z).detach().cpu() fake_img = G(fix_z).numpy().squeeze() log(f"fake_img.shape: {fake_img.shape}") save_image(fake_img, os.path.join(opts.det, 'images', str(ep) + '.png')) G.train() # Save model # print("type:",type(G.state_dict()).__name__) # print("type:",type(D.state_dict()).__name__) states = { 'G': G.state_dict(), 'D': D.state_dict(), 'Loss_G': Loss_G_list, 'Loss_D': Loss_D_list, 'start_epoch': ep, } #dygraph.save_dygraph(state, os.path.join(opts.det, 'models', 'latest')) save_checkpoint(states, os.path.join(opts.det, 'models', 'latest.pp')) # scheduler_D.step() # scheduler_G.step() # Plot the total loss curve Loss_D_list = Loss_D_list[1:] Loss_G_list = Loss_G_list[1:] plotLossCurve(opts, Loss_D_list, Loss_G_list)