Exemple #1
0
    def test_init_cma_opts():
        # type: () -> None

        sampler = optuna.integration.CmaEsSampler(
            x0={"x": 0, "y": 0},
            sigma0=0.1,
            cma_stds={"x": 1, "y": 1},
            seed=1,
            cma_opts={"popsize": 5},
            independent_sampler=DeterministicRelativeSampler({}, {}),
        )
        study = optuna.create_study(sampler=sampler)

        with patch("optuna.integration.cma._Optimizer") as mock_obj:
            mock_obj.ask.return_value = {"x": -1, "y": -1}
            study.optimize(
                lambda t: t.suggest_int("x", -1, 1) + t.suggest_int("y", -1, 1), n_trials=2
            )
            assert mock_obj.mock_calls[0] == call(
                {
                    "x": IntUniformDistribution(low=-1, high=1),
                    "y": IntUniformDistribution(low=-1, high=1),
                },
                {"x": 0, "y": 0},
                0.1,
                {"x": 1, "y": 1},
                {"popsize": 5, "seed": 1, "verbose": -2},
            )
Exemple #2
0
    def suggest_int(self,
                    name: str,
                    low: int,
                    high: int,
                    step: int = 1,
                    log: bool = False) -> int:

        if step != 1:
            if log:
                raise ValueError(
                    "The parameter `step != 1` is not supported when `log` is True."
                    "The specified `step` is {}.".format(step))
            else:
                distribution: Union[
                    IntUniformDistribution,
                    IntLogUniformDistribution] = IntUniformDistribution(
                        low=low, high=high, step=step)
        else:
            if log:
                distribution = IntLogUniformDistribution(low=low, high=high)
            else:
                distribution = IntUniformDistribution(low=low,
                                                      high=high,
                                                      step=step)
        return int(self._suggest(name, distribution))
Exemple #3
0
    def test_init_cma_opts():
        # type: () -> None

        sampler = optuna.integration.CmaEsSampler(
            x0={'x': 0, 'y': 0},
            sigma0=0.1,
            cma_stds={'x': 1, 'y': 1},
            seed=1,
            cma_opts={'popsize': 5},
            independent_sampler=DeterministicRelativeSampler({}, {}))
        study = optuna.create_study(sampler=sampler)

        with patch('optuna.integration.cma._Optimizer') as mock_obj:
            mock_obj.ask.return_value = {'x': -1, 'y': -1}
            study.optimize(
                lambda t: t.suggest_int('x', -1, 1) + t.suggest_int('y', -1, 1), n_trials=2)
            assert mock_obj.mock_calls[0] == call({
                'x': IntUniformDistribution(low=-1, high=1),
                'y': IntUniformDistribution(low=-1, high=1)
            }, {
                'x': 0,
                'y': 0
            }, 0.1, {
                'x': 1,
                'y': 1
            }, {
                'popsize': 5,
                'seed': 1,
                'verbose': -2
            })
Exemple #4
0
    def search_space() -> Dict[str, BaseDistribution]:

        return {
            "c": CategoricalDistribution(("a", "b")),
            "d": DiscreteUniformDistribution(-1, 9, 2),
            "i": IntUniformDistribution(-1, 1),
            "ii": IntUniformDistribution(-1, 3, 2),
            "l": LogUniformDistribution(0.001, 0.1),
            "u": UniformDistribution(-2, 2),
        }
Exemple #5
0
def test_intersection_search_space() -> None:
    search_space = optuna.samplers.IntersectionSearchSpace()
    study = optuna.create_study()

    # No trial.
    assert search_space.calculate(study) == {}
    assert search_space.calculate(study) == optuna.samplers.intersection_search_space(study)

    # First trial.
    study.optimize(lambda t: t.suggest_uniform("y", -3, 3) + t.suggest_int("x", 0, 10), n_trials=1)
    assert search_space.calculate(study) == {
        "x": IntUniformDistribution(low=0, high=10),
        "y": UniformDistribution(low=-3, high=3),
    }
    assert search_space.calculate(study) == optuna.samplers.intersection_search_space(study)

    # Returning sorted `OrderedDict` instead of `dict`.
    assert search_space.calculate(study, ordered_dict=True) == OrderedDict(
        [
            ("x", IntUniformDistribution(low=0, high=10)),
            ("y", UniformDistribution(low=-3, high=3)),
        ]
    )
    assert search_space.calculate(
        study, ordered_dict=True
    ) == optuna.samplers.intersection_search_space(study, ordered_dict=True)

    # Second trial (only 'y' parameter is suggested in this trial).
    study.optimize(lambda t: t.suggest_uniform("y", -3, 3), n_trials=1)
    assert search_space.calculate(study) == {"y": UniformDistribution(low=-3, high=3)}
    assert search_space.calculate(study) == optuna.samplers.intersection_search_space(study)

    # Failed or pruned trials are not considered in the calculation of
    # an intersection search space.
    def objective(trial, exception):
        # type: (optuna.trial.Trial, Exception) -> float

        trial.suggest_uniform("z", 0, 1)
        raise exception

    study.optimize(lambda t: objective(t, RuntimeError()), n_trials=1, catch=(RuntimeError,))
    study.optimize(lambda t: objective(t, optuna.exceptions.TrialPruned()), n_trials=1)
    assert search_space.calculate(study) == {"y": UniformDistribution(low=-3, high=3)}
    assert search_space.calculate(study) == optuna.samplers.intersection_search_space(study)

    # If two parameters have the same name but different distributions,
    # those are regarded as different parameters.
    study.optimize(lambda t: t.suggest_uniform("y", -1, 1), n_trials=1)
    assert search_space.calculate(study) == {}
    assert search_space.calculate(study) == optuna.samplers.intersection_search_space(study)

    # The search space remains empty once it is empty.
    study.optimize(lambda t: t.suggest_uniform("y", -3, 3) + t.suggest_int("x", 0, 10), n_trials=1)
    assert search_space.calculate(study) == {}
    assert search_space.calculate(study) == optuna.samplers.intersection_search_space(study)
Exemple #6
0
def test_not_contained_param() -> None:
    trial = create_trial(
        value=0.2,
        params={"x": 1.0},
        distributions={"x": UniformDistribution(1.0, 10.0)},
    )
    with pytest.warns(UserWarning):
        assert trial.suggest_float("x", 10.0, 100.0) == 1.0

    trial = create_trial(
        value=0.2,
        params={"x": 1.0},
        distributions={"x": LogUniformDistribution(1.0, 10.0)},
    )
    with pytest.warns(UserWarning):
        assert trial.suggest_float("x", 10.0, 100.0, log=True) == 1.0

    trial = create_trial(
        value=0.2,
        params={"x": 1.0},
        distributions={"x": DiscreteUniformDistribution(1.0, 10.0, 1.0)},
    )
    with pytest.warns(UserWarning):
        assert trial.suggest_float("x", 10.0, 100.0, step=1.0) == 1.0

    trial = create_trial(
        value=0.2,
        params={"x": 1.0},
        distributions={"x": IntUniformDistribution(1, 10)},
    )
    with pytest.warns(UserWarning):
        assert trial.suggest_int("x", 10, 100) == 1

    trial = create_trial(
        value=0.2,
        params={"x": 1},
        distributions={"x": IntUniformDistribution(1, 10, 1)},
    )
    with pytest.warns(UserWarning):
        assert trial.suggest_int("x", 10, 100, 1) == 1

    trial = create_trial(
        value=0.2,
        params={"x": 1},
        distributions={"x": IntLogUniformDistribution(1, 10)},
    )
    with pytest.warns(UserWarning):
        assert trial.suggest_int("x", 10, 100, log=True) == 1
Exemple #7
0
def test_distributions(storage_init_func):
    # type: (Callable[[], storages.BaseStorage]) -> None

    def objective(trial):
        # type: (Trial) -> float

        trial.suggest_uniform("a", 0, 10)
        trial.suggest_loguniform("b", 0.1, 10)
        trial.suggest_discrete_uniform("c", 0, 10, 1)
        trial.suggest_int("d", 0, 10)
        trial.suggest_categorical("e", ["foo", "bar", "baz"])
        trial.suggest_int("f", 1, 10, log=True)

        return 1.0

    study = create_study(storage_init_func())
    study.optimize(objective, n_trials=1)

    assert study.best_trial.distributions == {
        "a": UniformDistribution(low=0, high=10),
        "b": LogUniformDistribution(low=0.1, high=10),
        "c": DiscreteUniformDistribution(low=0, high=10, q=1),
        "d": IntUniformDistribution(low=0, high=10),
        "e": CategoricalDistribution(choices=("foo", "bar", "baz")),
        "f": IntLogUniformDistribution(low=1, high=10),
    }
Exemple #8
0
def test_sample_single_distribution(
        sampler_class: Callable[[], BaseSampler]) -> None:

    relative_search_space = {
        "a": UniformDistribution(low=1.0, high=1.0),
        "b": LogUniformDistribution(low=1.0, high=1.0),
        "c": DiscreteUniformDistribution(low=1.0, high=1.0, q=1.0),
        "d": IntUniformDistribution(low=1, high=1),
        "e": IntLogUniformDistribution(low=1, high=1),
        "f": CategoricalDistribution([1]),
        "g": FloatDistribution(low=1.0, high=1.0),
        "h": FloatDistribution(low=1.0, high=1.0, log=True),
        "i": FloatDistribution(low=1.0, high=1.0, step=1.0),
        "j": IntDistribution(low=1, high=1),
        "k": IntDistribution(low=1, high=1, log=True),
    }

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", optuna.exceptions.ExperimentalWarning)
        sampler = sampler_class()
    study = optuna.study.create_study(sampler=sampler)

    # We need to test the construction of the model, so we should set `n_trials >= 2`.
    for _ in range(2):
        trial = study.ask(fixed_distributions=relative_search_space)
        study.tell(trial, 1.0)
        for param_name in relative_search_space.keys():
            assert trial.params[param_name] == 1
Exemple #9
0
def test_sample_relative():
    # type: () -> None

    relative_search_space = {
        'a': UniformDistribution(low=0, high=5),
        'b': CategoricalDistribution(choices=('foo', 'bar', 'baz')),
        'c': IntUniformDistribution(low=20, high=50),  # Not exist in `relative_params`.
    }
    relative_params = {
        'a': 3.2,
        'b': 'baz',
    }
    unknown_param_value = 30

    sampler = FixedSampler(  # type: ignore
        relative_search_space, relative_params, unknown_param_value)
    study = optuna.study.create_study(sampler=sampler)

    def objective(trial):
        # type: (Trial) -> float

        # Predefined parameters are sampled by `sample_relative()` method.
        assert trial.suggest_uniform('a', 0, 5) == 3.2
        assert trial.suggest_categorical('b', ['foo', 'bar', 'baz']) == 'baz'

        # Other parameters are sampled by `sample_independent()` method.
        assert trial.suggest_int('c', 20, 50) == unknown_param_value
        assert trial.suggest_loguniform('d', 1, 100) == unknown_param_value
        assert trial.suggest_uniform('e', 20, 40) == unknown_param_value

        return 0.0

    study.optimize(objective, n_trials=10, catch=())
    for trial in study.trials:
        assert trial.params == {'a': 3.2, 'b': 'baz', 'c': 30, 'd': 30, 'e': 30}
def create_optuna_distribution_from_override(override: Override) -> Any:
    value = override.value()
    if not override.is_sweep_override():
        return value

    if override.is_choice_sweep():
        assert isinstance(value, ChoiceSweep)
        choices = [
            x for x in override.sweep_iterator(transformer=Transformer.encode)
        ]
        return CategoricalDistribution(choices)

    if override.is_range_sweep():
        choices = [
            x for x in override.sweep_iterator(transformer=Transformer.encode)
        ]
        return CategoricalDistribution(choices)

    if override.is_interval_sweep():
        assert isinstance(value, IntervalSweep)
        if "log" in value.tags:
            if "int" in value.tags:
                return IntLogUniformDistribution(value.start, value.end)
            return LogUniformDistribution(value.start, value.end)
        else:
            if "int" in value.tags:
                return IntUniformDistribution(value.start, value.end)
            return UniformDistribution(value.start, value.end)

    raise NotImplementedError(
        "{} is not supported by Optuna sweeper.".format(override))
Exemple #11
0
def test_sample_relative() -> None:

    relative_search_space: Dict[str, BaseDistribution] = {
        "a": UniformDistribution(low=0, high=5),
        "b": CategoricalDistribution(choices=("foo", "bar", "baz")),
        "c": IntUniformDistribution(low=20, high=50),  # Not exist in `relative_params`.
    }
    relative_params = {
        "a": 3.2,
        "b": "baz",
    }
    unknown_param_value = 30

    sampler = FixedSampler(  # type: ignore
        relative_search_space, relative_params, unknown_param_value
    )
    study = optuna.study.create_study(sampler=sampler)

    def objective(trial: Trial) -> float:

        # Predefined parameters are sampled by `sample_relative()` method.
        assert trial.suggest_uniform("a", 0, 5) == 3.2
        assert trial.suggest_categorical("b", ["foo", "bar", "baz"]) == "baz"

        # Other parameters are sampled by `sample_independent()` method.
        assert trial.suggest_int("c", 20, 50) == unknown_param_value
        assert trial.suggest_loguniform("d", 1, 100) == unknown_param_value
        assert trial.suggest_uniform("e", 20, 40) == unknown_param_value

        return 0.0

    study.optimize(objective, n_trials=10, catch=())
    for trial in study.trials:
        assert trial.params == {"a": 3.2, "b": "baz", "c": 30, "d": 30, "e": 30}
def test_search_space_transform_encoding() -> None:
    trans = _SearchSpaceTransform({"x0": IntUniformDistribution(0, 3)})

    assert len(trans.column_to_encoded_columns) == 1
    numpy.testing.assert_equal(trans.column_to_encoded_columns[0], numpy.array([0]))
    numpy.testing.assert_equal(trans.encoded_column_to_column, numpy.array([0]))

    trans = _SearchSpaceTransform({"x0": CategoricalDistribution(["foo", "bar", "baz"])})

    assert len(trans.column_to_encoded_columns) == 1
    numpy.testing.assert_equal(trans.column_to_encoded_columns[0], numpy.array([0, 1, 2]))
    numpy.testing.assert_equal(trans.encoded_column_to_column, numpy.array([0, 0, 0]))

    trans = _SearchSpaceTransform(
        {
            "x0": UniformDistribution(0, 3),
            "x1": CategoricalDistribution(["foo", "bar", "baz"]),
            "x3": DiscreteUniformDistribution(0, 1, q=0.2),
        }
    )

    assert len(trans.column_to_encoded_columns) == 3
    numpy.testing.assert_equal(trans.column_to_encoded_columns[0], numpy.array([0]))
    numpy.testing.assert_equal(trans.column_to_encoded_columns[1], numpy.array([1, 2, 3]))
    numpy.testing.assert_equal(trans.column_to_encoded_columns[2], numpy.array([4]))
    numpy.testing.assert_equal(trans.encoded_column_to_column, numpy.array([0, 1, 1, 1, 2]))
def test_search_space_transform_untransform_params() -> None:
    search_space = {
        "x0": DiscreteUniformDistribution(0, 1, q=0.2),
        "x1": CategoricalDistribution(["foo", "bar", "baz", "qux"]),
        "x2": IntLogUniformDistribution(1, 10),
        "x3": CategoricalDistribution(["quux", "quuz"]),
        "x4": UniformDistribution(2, 3),
        "x5": LogUniformDistribution(1, 10),
        "x6": IntUniformDistribution(2, 4),
        "x7": CategoricalDistribution(["corge"]),
    }

    params = {
        "x0": 0.2,
        "x1": "qux",
        "x2": 1,
        "x3": "quux",
        "x4": 2.0,
        "x5": 1.0,
        "x6": 2,
        "x7": "corge",
    }

    trans = _SearchSpaceTransform(search_space)
    trans_params = trans.transform(params)
    untrans_params = trans.untransform(trans_params)

    for name in params.keys():
        assert untrans_params[name] == params[name]
Exemple #14
0
def create_optuna_distribution_from_config(
        config: MutableMapping[str, Any]) -> BaseDistribution:
    kwargs = dict(config)
    if isinstance(config["type"], str):
        kwargs["type"] = DistributionType[config["type"]]
    param = DistributionConfig(**kwargs)
    if param.type == DistributionType.categorical:
        assert param.choices is not None
        return CategoricalDistribution(param.choices)
    if param.type == DistributionType.int:
        assert param.low is not None
        assert param.high is not None
        if param.log:
            return IntLogUniformDistribution(int(param.low), int(param.high))
        step = int(param.step) if param.step is not None else 1
        return IntUniformDistribution(int(param.low),
                                      int(param.high),
                                      step=step)
    if param.type == DistributionType.float:
        assert param.low is not None
        assert param.high is not None
        if param.log:
            return LogUniformDistribution(param.low, param.high)
        if param.step is not None:
            return DiscreteUniformDistribution(param.low, param.high,
                                               param.step)
        return UniformDistribution(param.low, param.high)
    raise NotImplementedError(
        f"{param.type} is not supported by Optuna sweeper.")
Exemple #15
0
def create_optuna_distribution_from_override(override: Override) -> Any:
    value = override.value()
    if not override.is_sweep_override():
        return value

    choices: List[CategoricalChoiceType] = []
    if override.is_choice_sweep():
        assert isinstance(value, ChoiceSweep)
        for x in override.sweep_iterator(transformer=Transformer.encode):
            assert isinstance(
                x, (str, int, float, bool)
            ), f"A choice sweep expects str, int, float, or bool type. Got {type(x)}."
            choices.append(x)
        return CategoricalDistribution(choices)

    if override.is_range_sweep():
        assert isinstance(value, RangeSweep)
        assert value.start is not None
        assert value.stop is not None
        if value.shuffle:
            for x in override.sweep_iterator(transformer=Transformer.encode):
                assert isinstance(
                    x, (str, int, float, bool)
                ), f"A choice sweep expects str, int, float, or bool type. Got {type(x)}."
                choices.append(x)
            return CategoricalDistribution(choices)
        return IntUniformDistribution(int(value.start),
                                      int(value.stop),
                                      step=int(value.step))

    if override.is_interval_sweep():
        assert isinstance(value, IntervalSweep)
        assert value.start is not None
        assert value.end is not None
        if "log" in value.tags:
            if isinstance(value.start, int) and isinstance(value.end, int):
                return IntLogUniformDistribution(int(value.start),
                                                 int(value.end))
            return LogUniformDistribution(value.start, value.end)
        else:
            if isinstance(value.start, int) and isinstance(value.end, int):
                return IntUniformDistribution(value.start, value.end)
            return UniformDistribution(value.start, value.end)

    raise NotImplementedError(
        f"{override} is not supported by Optuna sweeper.")
Exemple #16
0
    def search_space():
        # type: () -> Dict[str, BaseDistribution]

        return {
            'c': CategoricalDistribution(('a', 'b')),
            'd': DiscreteUniformDistribution(-1, 9, 2),
            'i': IntUniformDistribution(-1, 1),
            'l': LogUniformDistribution(0.001, 0.1),
            'u': UniformDistribution(-2, 2),
        }
Exemple #17
0
def test_relative_parameters(storage_mode: str) -> None:

    relative_search_space = {
        "x": UniformDistribution(low=5, high=6),
        "y": UniformDistribution(low=5, high=6),
    }
    relative_params = {"x": 5.5, "y": 5.5, "z": 5.5}

    sampler = DeterministicRelativeSampler(relative_search_space,
                                           relative_params)  # type: ignore

    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage, sampler=sampler)

        def create_trial() -> Trial:

            return Trial(study,
                         study._storage.create_new_trial(study._study_id))

        # Suggested from `relative_params`.
        trial0 = create_trial()
        distribution0 = UniformDistribution(low=0, high=100)
        assert trial0._suggest("x", distribution0) == 5.5

        # Not suggested from `relative_params` (due to unknown parameter name).
        trial1 = create_trial()
        distribution1 = distribution0
        assert trial1._suggest("w", distribution1) != 5.5

        # Not suggested from `relative_params` (due to incompatible value range).
        trial2 = create_trial()
        distribution2 = UniformDistribution(low=0, high=5)
        assert trial2._suggest("x", distribution2) != 5.5

        # Error (due to incompatible distribution class).
        trial3 = create_trial()
        distribution3 = IntUniformDistribution(low=1, high=100)
        with pytest.raises(ValueError):
            trial3._suggest("y", distribution3)

        # Error ('z' is included in `relative_params` but not in `relative_search_space`).
        trial4 = create_trial()
        distribution4 = UniformDistribution(low=0, high=10)
        with pytest.raises(ValueError):
            trial4._suggest("z", distribution4)

        # Error (due to incompatible distribution class).
        trial5 = create_trial()
        distribution5 = IntLogUniformDistribution(low=1, high=100)
        with pytest.raises(ValueError):
            trial5._suggest("y", distribution5)
Exemple #18
0
def test_suggest_int(storage_init_func: Callable[[], storages.BaseStorage]) -> None:

    mock = Mock()
    mock.side_effect = [1, 2]
    sampler = samplers.RandomSampler()

    with patch.object(sampler, "sample_independent", mock) as mock_object:
        study = create_study(storage_init_func(), sampler=sampler)
        trial = Trial(study, study._storage.create_new_trial(study._study_id))
        distribution = IntUniformDistribution(low=0, high=3)

        assert trial._suggest("x", distribution) == 1  # Test suggesting a param.
        assert trial._suggest("x", distribution) == 1  # Test suggesting the same param.
        assert trial._suggest("y", distribution) == 2  # Test suggesting a different param.
        assert trial.params == {"x": 1, "y": 2}
        assert mock_object.call_count == 2
Exemple #19
0
def restore_old_distribution(distribution_json: str) -> str:
    distribution = json_to_distribution(distribution_json)
    old_distribution: BaseDistribution

    # Float distributions.
    if isinstance(distribution, FloatDistribution):
        if distribution.log:
            old_distribution = LogUniformDistribution(
                low=distribution.low,
                high=distribution.high,
            )
        else:
            if distribution.step is not None:
                old_distribution = DiscreteUniformDistribution(
                    low=distribution.low,
                    high=distribution.high,
                    q=distribution.step,
                )
            else:
                old_distribution = UniformDistribution(
                    low=distribution.low,
                    high=distribution.high,
                )

    # Integer distributions.
    elif isinstance(distribution, IntDistribution):
        if distribution.log:
            old_distribution = IntLogUniformDistribution(
                low=distribution.low,
                high=distribution.high,
                step=distribution.step,
            )
        else:
            old_distribution = IntUniformDistribution(
                low=distribution.low,
                high=distribution.high,
                step=distribution.step,
            )

    # Categorical distribution.
    else:
        old_distribution = distribution

    return distribution_to_json(old_distribution)
Exemple #20
0
def test_intersection_search_space():
    # type: () -> None

    study = optuna.create_study()

    # No trial.
    assert optuna.samplers.intersection_search_space(study) == {}

    # First trial.
    study.optimize(
        lambda t: t.suggest_int("x", 0, 10) + t.suggest_uniform("y", -3, 3),
        n_trials=1)
    assert optuna.samplers.intersection_search_space(study) == {
        "x": IntUniformDistribution(low=0, high=10),
        "y": UniformDistribution(low=-3, high=3),
    }

    # Second trial (only 'y' parameter is suggested in this trial).
    study.optimize(lambda t: t.suggest_uniform("y", -3, 3), n_trials=1)
    assert optuna.samplers.intersection_search_space(study) == {
        "y": UniformDistribution(low=-3, high=3)
    }

    # Failed or pruned trials are not considered in the calculation of
    # an intersection search space.
    def objective(trial, exception):
        # type: (optuna.trial.Trial, Exception) -> float

        trial.suggest_uniform("z", 0, 1)
        raise exception

    study.optimize(lambda t: objective(t, RuntimeError()),
                   n_trials=1,
                   catch=(RuntimeError, ))
    study.optimize(lambda t: objective(t, optuna.exceptions.TrialPruned()),
                   n_trials=1)
    assert optuna.samplers.intersection_search_space(study) == {
        "y": UniformDistribution(low=-3, high=3)
    }

    # If two parameters have the same name but different distributions,
    # those are regarded as different trials.
    study.optimize(lambda t: t.suggest_uniform("y", -1, 1), n_trials=1)
    assert optuna.samplers.intersection_search_space(study) == {}
Exemple #21
0
def test_frozen_trial_suggest_int() -> None:

    trial = FrozenTrial(
        number=0,
        trial_id=0,
        state=TrialState.COMPLETE,
        value=0.2,
        datetime_start=datetime.datetime.now(),
        datetime_complete=datetime.datetime.now(),
        params={"x": 1},
        distributions={"x": IntUniformDistribution(0, 10)},
        user_attrs={},
        system_attrs={},
        intermediate_values={},
    )

    assert trial.suggest_int("x", 0, 10) == 1

    with pytest.raises(ValueError):
        trial.suggest_int("y", 0, 10)
Exemple #22
0
    def test_is_compatible(search_space, x0):
        # type: (Dict[str, BaseDistribution], Dict[str, Any]) -> None

        optimizer = optuna.integration.cma._Optimizer(search_space, x0, 0.1,
                                                      None, {})

        # Compatible.
        trial = _create_frozen_trial(x0, search_space)
        assert optimizer._is_compatible(trial)

        # Compatible.
        trial = _create_frozen_trial(
            x0, dict(search_space, u=UniformDistribution(-10, 10)))
        assert optimizer._is_compatible(trial)

        # Compatible.
        trial = _create_frozen_trial(
            dict(x0, unknown=7),
            dict(search_space, unknown=UniformDistribution(0, 10)))
        assert optimizer._is_compatible(trial)

        # Incompatible ('u' doesn't exist).
        param = dict(x0)
        del param['u']
        dist = dict(search_space)
        del dist['u']
        trial = _create_frozen_trial(param, dist)
        assert not optimizer._is_compatible(trial)

        # Incompatible (the value of 'u' is out of range).
        trial = _create_frozen_trial(
            dict(x0, u=20), dict(search_space,
                                 u=UniformDistribution(-100, 100)))
        assert not optimizer._is_compatible(trial)

        # Error (different distribution class).
        trial = _create_frozen_trial(
            x0, dict(search_space, u=IntUniformDistribution(-2, 2)))
        with pytest.raises(ValueError):
            optimizer._is_compatible(trial)
Exemple #23
0
def test_distributions(storage_mode: str) -> None:
    def objective(trial: Trial) -> float:

        trial.suggest_float("a", 0, 10)
        trial.suggest_float("b", 0.1, 10, log=True)
        trial.suggest_float("c", 0, 10, step=1)
        trial.suggest_int("d", 0, 10)
        trial.suggest_categorical("e", ["foo", "bar", "baz"])
        trial.suggest_int("f", 1, 10, log=True)

        return 1.0

    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)
        study.optimize(objective, n_trials=1)

        assert study.best_trial.distributions == {
            "a": UniformDistribution(low=0, high=10),
            "b": LogUniformDistribution(low=0.1, high=10),
            "c": DiscreteUniformDistribution(low=0, high=10, q=1),
            "d": IntUniformDistribution(low=0, high=10),
            "e": CategoricalDistribution(choices=("foo", "bar", "baz")),
            "f": IntLogUniformDistribution(low=1, high=10),
        }
    def _parse_optuna_search_space(self, search_space_path):
        with open(search_space_path) as fin:
            search_space = json.load(fin)

        optuna_search_space: Dict[str, BaseDistribution] = {}
        low_values: Dict[str, Any] = {}
        for name, value in search_space.items():
            if not isinstance(value, dict):
                d = CategoricalDistribution((value, ))
                low_values[name] = str(value)
                optuna_search_space[name] = d
                continue

            sampling_strategy = value["sampling strategy"]
            if sampling_strategy == "choice":
                d = CategoricalDistribution(tuple(value["choices"]))
                optuna_search_space[name] = d
                low_values[name] = str(value["choices"][0])
                continue

            if sampling_strategy == "integer":
                d = IntUniformDistribution(value["bounds"][0],
                                           value["bounds"][1])
                optuna_search_space[name] = d
            elif sampling_strategy == "uniform":
                d = UniformDistribution(value["bounds"][0], value["bounds"][1])
                optuna_search_space[name] = d
            elif sampling_strategy == "loguniform":
                d = LogUniformDistribution(value["bounds"][0],
                                           value["bounds"][1])
                optuna_search_space[name] = d
            else:
                raise ValueError(
                    f"Unknown sampling strategy: {sampling_strategy}.")
            low_values[name] = str(value["bounds"][0])
        return optuna_search_space, low_values
def test_group_decomposed_search_space() -> None:
    search_space = _GroupDecomposedSearchSpace()
    study = create_study()

    # No trial.
    assert search_space.calculate(study).search_spaces == []

    # A single parameter.
    study.optimize(lambda t: t.suggest_int("x", 0, 10), n_trials=1)
    assert search_space.calculate(study).search_spaces == [{
        "x":
        IntUniformDistribution(low=0, high=10)
    }]

    # Disjoint parameters.
    study.optimize(
        lambda t: t.suggest_int("y", 0, 10) + t.suggest_float("z", -3, 3),
        n_trials=1)
    assert search_space.calculate(study).search_spaces == [
        {
            "x": IntUniformDistribution(low=0, high=10)
        },
        {
            "y": IntUniformDistribution(low=0, high=10),
            "z": UniformDistribution(low=-3, high=3),
        },
    ]

    # Parameters which include one of search spaces in the group.
    study.optimize(
        lambda t: t.suggest_int("y", 0, 10) + t.suggest_float("z", -3, 3) + t.
        suggest_float("u", 1e-2, 1e2, log=True) + bool(
            t.suggest_categorical("v", ["A", "B", "C"])),
        n_trials=1,
    )
    assert search_space.calculate(study).search_spaces == [
        {
            "x": IntUniformDistribution(low=0, high=10)
        },
        {
            "y": IntUniformDistribution(low=0, high=10),
            "z": UniformDistribution(low=-3, high=3),
        },
        {
            "u": LogUniformDistribution(low=1e-2, high=1e2),
            "v": CategoricalDistribution(choices=["A", "B", "C"]),
        },
    ]

    # A parameter which is included by one of search spaces in thew group.
    study.optimize(lambda t: t.suggest_float("u", 1e-2, 1e2, log=True),
                   n_trials=1)
    assert search_space.calculate(study).search_spaces == [
        {
            "x": IntUniformDistribution(low=0, high=10)
        },
        {
            "y": IntUniformDistribution(low=0, high=10),
            "z": UniformDistribution(low=-3, high=3),
        },
        {
            "u": LogUniformDistribution(low=1e-2, high=1e2)
        },
        {
            "v": CategoricalDistribution(choices=["A", "B", "C"])
        },
    ]

    # Parameters whose intersection with one of search spaces in the group is not empty.
    study.optimize(lambda t: t.suggest_int("y", 0, 10) + t.suggest_int(
        "w", 2, 8, log=True),
                   n_trials=1)
    assert search_space.calculate(study).search_spaces == [
        {
            "v": CategoricalDistribution(choices=["A", "B", "C"])
        },
        {
            "x": IntUniformDistribution(low=0, high=10)
        },
        {
            "u": LogUniformDistribution(low=1e-2, high=1e2)
        },
        {
            "y": IntUniformDistribution(low=0, high=10)
        },
        {
            "z": UniformDistribution(low=-3, high=3)
        },
        {
            "w": IntLogUniformDistribution(low=2, high=8)
        },
    ]

    search_space = _GroupDecomposedSearchSpace()
    study = create_study()

    # Failed or pruned trials are not considered in the calculation of
    # an intersection search space.
    def objective(trial: Trial, exception: Exception) -> float:

        trial.suggest_float("a", 0, 1)
        raise exception

    study.optimize(lambda t: objective(t, RuntimeError()),
                   n_trials=1,
                   catch=(RuntimeError, ))
    study.optimize(lambda t: objective(t, TrialPruned()), n_trials=1)
    assert search_space.calculate(study).search_spaces == []

    # If two parameters have the same name but different distributions,
    # the first one takes priority.
    study.optimize(lambda t: t.suggest_float("a", -1, 1), n_trials=1)
    study.optimize(lambda t: t.suggest_float("a", 0, 1), n_trials=1)
    assert search_space.calculate(study).search_spaces == [{
        "a":
        UniformDistribution(low=-1, high=1)
    }]
import pytest

from optuna._transform import _SearchSpaceTransform
from optuna.distributions import BaseDistribution
from optuna.distributions import CategoricalDistribution
from optuna.distributions import DiscreteUniformDistribution
from optuna.distributions import IntLogUniformDistribution
from optuna.distributions import IntUniformDistribution
from optuna.distributions import LogUniformDistribution
from optuna.distributions import UniformDistribution


@pytest.mark.parametrize(
    "param,distribution",
    [
        (0, IntUniformDistribution(0, 3)),
        (1, IntLogUniformDistribution(1, 10)),
        (2, IntUniformDistribution(0, 10, step=2)),
        (0.0, UniformDistribution(0, 3)),
        (1.0, LogUniformDistribution(1, 10)),
        (0.2, DiscreteUniformDistribution(0, 1, q=0.2)),
        ("foo", CategoricalDistribution(["foo"])),
        ("bar", CategoricalDistribution(["foo", "bar", "baz"])),
    ],
)
def test_search_space_transform_shapes_dtypes(param: Any, distribution: BaseDistribution) -> None:
    trans = _SearchSpaceTransform({"x0": distribution})
    trans_params = trans.transform({"x0": param})

    if isinstance(distribution, CategoricalDistribution):
        expected_bounds_shape = (len(distribution.choices), 2)
Exemple #27
0
    def suggest_int(self, name: str, low: int, high: int, step: int = 1, log: bool = False) -> int:
        """Suggest a value for the integer parameter.

        The value is sampled from the integers in :math:`[\\mathsf{low}, \\mathsf{high}]`.

        Example:

            Suggest the number of trees in `RandomForestClassifier <https://scikit-learn.org/
            stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html>`_.

            .. testcode::

                import numpy as np
                from sklearn.datasets import load_iris
                from sklearn.ensemble import RandomForestClassifier
                from sklearn.model_selection import train_test_split

                import optuna

                X, y = load_iris(return_X_y=True)
                X_train, X_valid, y_train, y_valid = train_test_split(X, y)


                def objective(trial):
                    n_estimators = trial.suggest_int("n_estimators", 50, 400)
                    clf = RandomForestClassifier(n_estimators=n_estimators, random_state=0)
                    clf.fit(X_train, y_train)
                    return clf.score(X_valid, y_valid)


                study = optuna.create_study(direction="maximize")
                study.optimize(objective, n_trials=3)

        Args:
            name:
                A parameter name.
            low:
                Lower endpoint of the range of suggested values. ``low`` is included in the range.
            high:
                Upper endpoint of the range of suggested values. ``high`` is included in the range.
            step:
                A step of discretization.

                .. note::
                    Note that :math:`\\mathsf{high}` is modified if the range is not divisible by
                    :math:`\\mathsf{step}`. Please check the warning messages to find the changed
                    values.

                .. note::
                    The method returns one of the values in the sequence
                    :math:`\\mathsf{low}, \\mathsf{low} + \\mathsf{step}, \\mathsf{low} + 2 *
                    \\mathsf{step}, \\dots, \\mathsf{low} + k * \\mathsf{step} \\le
                    \\mathsf{high}`, where :math:`k` denotes an integer.

                .. note::
                    The ``step != 1`` and ``log`` arguments cannot be used at the same time.
                    To set the ``step`` argument :math:`\\mathsf{step} \\ge 2`, set the
                    ``log`` argument to :obj:`False`.
            log:
                A flag to sample the value from the log domain or not.

                .. note::
                    If ``log`` is true, at first, the range of suggested values is divided into
                    grid points of width 1. The range of suggested values is then converted to
                    a log domain, from which a value is sampled. The uniformly sampled
                    value is re-converted to the original domain and rounded to the nearest grid
                    point that we just split, and the suggested value is determined.
                    For example, if `low = 2` and `high = 8`, then the range of suggested values is
                    `[2, 3, 4, 5, 6, 7, 8]` and lower values tend to be more sampled than higher
                    values.

                .. note::
                    The ``step != 1`` and ``log`` arguments cannot be used at the same time.
                    To set the ``log`` argument to :obj:`True`, set the ``step`` argument to 1.

        Raises:
            :exc:`ValueError`:
                If ``step != 1`` and ``log = True`` are specified.

        .. seealso::
            :ref:`configurations` tutorial describes more details and flexible usages.
        """

        if step != 1:
            if log:
                raise ValueError(
                    "The parameter `step != 1` is not supported when `log` is True."
                    "The specified `step` is {}.".format(step)
                )
            else:
                distribution: Union[
                    IntUniformDistribution, IntLogUniformDistribution
                ] = IntUniformDistribution(low=low, high=high, step=step)
        else:
            if log:
                distribution = IntLogUniformDistribution(low=low, high=high)
            else:
                distribution = IntUniformDistribution(low=low, high=high, step=step)

        self._check_distribution(name, distribution)

        return int(self._suggest(name, distribution))
Exemple #28
0
        np.floating,
    )

    # Check all points are multiples of distribution.q.
    points = points
    points -= distribution.low
    points /= distribution.q
    round_points = np.round(points)
    np.testing.assert_almost_equal(round_points, points)


@parametrize_sampler
@pytest.mark.parametrize(
    "distribution",
    [
        IntUniformDistribution(-10, 10),
        IntUniformDistribution(0, 10),
        IntUniformDistribution(-10, 0),
        IntUniformDistribution(-10, 10, 2),
        IntUniformDistribution(0, 10, 2),
        IntUniformDistribution(-10, 0, 2),
    ],
)
def test_int(sampler_class: Callable[[], BaseSampler],
             distribution: IntUniformDistribution) -> None:

    study = optuna.study.create_study(sampler=sampler_class())
    points = np.array([
        study.sampler.sample_independent(study, _create_new_trial(study), "x",
                                         distribution) for _ in range(100)
    ])
Exemple #29
0
    def suggest_int(self, name, low, high, step=1, log=False):
        # type: (str, int, int, int, bool) -> int
        """Suggest a value for the integer parameter.

        The value is sampled from the integers in :math:`[\\mathsf{low}, \\mathsf{high}]`, and the
        step of discretization is :math:`\\mathsf{step}`. More specifically, this method returns
        one of the values in the sequence :math:`\\mathsf{low}, \\mathsf{low} + \\mathsf{step},
        \\mathsf{low} + 2 * \\mathsf{step}, \\dots, \\mathsf{low} + k * \\mathsf{step} \\le
        \\mathsf{high}`, where :math:`k` denotes an integer. Note that :math:`\\mathsf{high}` is
        modified if the range is not divisible by :math:`\\mathsf{step}`. Please check the warning
        messages to find the changed values.

        Example:

            Suggest the number of trees in `RandomForestClassifier <https://scikit-learn.org/
            stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html>`_.

            .. testcode::

                import numpy as np
                from sklearn.datasets import load_iris
                from sklearn.ensemble import RandomForestClassifier
                from sklearn.model_selection import train_test_split

                import optuna

                X, y = load_iris(return_X_y=True)
                X_train, X_valid, y_train, y_valid = train_test_split(X, y)

                def objective(trial):
                    n_estimators = trial.suggest_int('n_estimators', 50, 400)
                    clf = RandomForestClassifier(n_estimators=n_estimators, random_state=0)
                    clf.fit(X_train, y_train)
                    return clf.score(X_valid, y_valid)

                study = optuna.create_study(direction='maximize')
                study.optimize(objective, n_trials=3)


        Args:
            name:
                A parameter name.
            low:
                Lower endpoint of the range of suggested values. ``low`` is included in the range.
            high:
                Upper endpoint of the range of suggested values. ``high`` is included in the range.
            step:
                A step of discretization.
            log:
                A flag to sample the value from the log domain or not.
                If ``log`` is true, at first, the range of suggested values is divided into grid
                points of width ``step``. The range of suggested values is then converted to a log
                domain, from which a value is uniformly sampled. The uniformly sampled value is
                re-converted to the original domain and rounded to the nearest grid point that we
                just split, and the suggested value is determined.
                For example,
                if `low = 2`, `high = 8` and `step = 2`,
                then the range of suggested values is divided by ``step`` as `[2, 4, 6, 8]`
                and lower values tend to be more sampled than higher values.
        """

        if log:
            distribution = IntLogUniformDistribution(
                low=low, high=high, step=step
            )  # type: Union[IntUniformDistribution, IntLogUniformDistribution]
        else:
            distribution = IntUniformDistribution(low=low, high=high, step=step)

        self._check_distribution(name, distribution)

        if distribution.low == distribution.high:
            return self._set_new_param_or_get_existing(name, distribution.low, distribution)

        return int(self._suggest(name, distribution))
@mark.parametrize(
    "input, expected",
    [
        (
            {
                "type": "categorical",
                "choices": [1, 2, 3]
            },
            CategoricalDistribution([1, 2, 3]),
        ),
        ({
            "type": "int",
            "low": 0,
            "high": 10
        }, IntUniformDistribution(0, 10)),
        (
            {
                "type": "int",
                "low": 0,
                "high": 10,
                "step": 2
            },
            IntUniformDistribution(0, 10, step=2),
        ),
        ({
            "type": "int",
            "low": 0,
            "high": 5
        }, IntUniformDistribution(0, 5)),
        (