Exemple #1
0
def test_plot_contour_mixture_category_types() -> None:
    study = create_study()
    study.add_trial(
        create_trial(
            value=0.0,
            params={"param_a": None, "param_b": 101},
            distributions={
                "param_a": CategoricalDistribution([None, "100"]),
                "param_b": CategoricalDistribution([101, 102.0]),
            },
        )
    )
    study.add_trial(
        create_trial(
            value=0.5,
            params={"param_a": "100", "param_b": 102.0},
            distributions={
                "param_a": CategoricalDistribution([None, "100"]),
                "param_b": CategoricalDistribution([101, 102.0]),
            },
        )
    )
    figure = plot_contour(study)
    assert figure.layout["xaxis"]["range"] == ("100", "None")
    assert figure.layout["yaxis"]["range"] == ("101", "102.0")
    assert figure.layout["xaxis"]["type"] == "category"
    assert figure.layout["yaxis"]["type"] == "category"
Exemple #2
0
def test_plot_contour(params: Optional[List[str]]) -> None:

    # Test with no trial.
    study_without_trials = prepare_study_with_trials(no_trials=True)
    figure = plot_contour(study_without_trials, params=params)
    assert len(figure.data) == 0

    # Test whether trials with `ValueError`s are ignored.

    def fail_objective(_: Trial) -> float:

        raise ValueError

    study = create_study()
    study.optimize(fail_objective, n_trials=1, catch=(ValueError, ))
    figure = plot_contour(study, params=params)
    assert len(figure.data) == 0

    # Test with some trials.
    study = prepare_study_with_trials()

    # Test ValueError due to wrong params.
    with pytest.raises(ValueError):
        plot_contour(study, ["optuna", "Optuna"])

    figure = plot_contour(study, params=params)
    if params is not None and len(params) < 3:
        if len(params) <= 1:
            assert not figure.data
        elif len(params) == 2:
            assert figure.data[0]["x"] == (0.925, 1.0, 2.5, 2.575)
            assert figure.data[0]["y"] == (-0.1, 0.0, 1.0, 2.0, 2.1)
            assert figure.data[0]["z"][3][1] == 0.0
            assert figure.data[0]["z"][2][2] == 1.0
            assert figure.data[0]["colorbar"]["title"][
                "text"] == "Objective Value"
            assert figure.data[1]["x"] == (1.0, 2.5)
            assert figure.data[1]["y"] == (2.0, 1.0)
            assert figure.layout["xaxis"]["range"] == (0.925, 2.575)
            assert figure.layout["yaxis"]["range"] == (-0.1, 2.1)
    else:
        # TODO(crcrpar): Add more checks. Currently this only checks the number of data.
        n_params = len(params) if params is not None else 4
        assert len(figure.data) == n_params**2 + n_params * (n_params - 1)
Exemple #3
0
def log_study_info(study, experiment=None, log_charts=True, params=None):
    """Logs runs results and parameters to neptune.

    Logs all hyperparameter optimization results to Neptune. Those include best score ('best_score' metric),
    best parameters ('best_parameters' property), the study object itself as artifact, and interactive optuna charts
    ('contour', 'parallel_coordinate', 'slice', 'optimization_history') as artifacts in 'charts' sub folder.

    Args:
        study('optuna.study.Study'): Optuna study object after training is completed.
        experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None.
        log_charts('bool'): Whether optuna visualization charts should be logged. By default all charts are logged.
        params(`list`): List of parameters to be visualized. Default is all parameters.

    Examples:
        Initialize neptune_monitor::

            import neptune
            import neptunecontrib.monitoring.optuna as opt_utils

            neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME')
            neptune.create_experiment(name='optuna sweep')

            neptune_callback = opt_utils.NeptuneCallback()

        Run Optuna training passing monitor as callback::

            ...
            study = optuna.create_study(direction='maximize')
            study.optimize(objective, n_trials=100, callbacks=[neptune_callback])
            opt_utils.log_study_info(study)

        You can explore an example experiment in Neptune:
        https://ui.neptune.ai/o/shared/org/showroom/e/SHOW-1016/artifacts
     """
    import optuna.visualization as vis

    _exp = experiment if experiment else neptune

    _exp.log_metric('best_score', study.best_value)
    _exp.set_property('best_parameters', study.best_params)

    if log_charts:
        log_chart(name='optimization_history',
                  chart=vis.plot_optimization_history(study),
                  experiment=_exp)
        log_chart(name='contour',
                  chart=vis.plot_contour(study, params=params),
                  experiment=_exp)
        log_chart(name='parallel_coordinate',
                  chart=vis.plot_parallel_coordinate(study, params=params),
                  experiment=_exp)
        log_chart(name='slice',
                  chart=vis.plot_slice(study, params=params),
                  experiment=_exp)

    pickle_and_log_artifact(study, 'study.pkl', experiment=_exp)
Exemple #4
0
def test_nonfinite_multiobjective(objective: int, value: float) -> None:

    study = prepare_study_with_trials(with_c_d=True,
                                      n_objectives=2,
                                      value_for_first_trial=value)
    figure = plot_contour(study,
                          params=["param_b", "param_d"],
                          target=lambda t: t.values[objective])
    zvals = itertools.chain.from_iterable(figure.data[0]["z"])
    assert value not in zvals
Exemple #5
0
def test_plot_contour_customized_target(params: List[str]) -> None:

    study = prepare_study_with_trials()
    with pytest.warns(UserWarning):
        figure = plot_contour(study, params=params, target=lambda t: t.params["param_d"])
    for data in figure.data:
        if "z" in data:
            assert 4.0 in itertools.chain.from_iterable(data["z"])
            assert 2.0 in itertools.chain.from_iterable(data["z"])
    if len(params) == 2:
        assert figure.data[0]["z"][3][1] == 4.0
        assert figure.data[0]["z"][2][2] == 2.0
Exemple #6
0
def test_color_map(direction: str) -> None:
    study = prepare_study_with_trials(with_c_d=False, direction=direction)

    # `target` is `None`.
    contour = plot_contour(study).data[0]
    assert COLOR_SCALE == [v[1] for v in contour["colorscale"]]
    if direction == "minimize":
        assert contour["reversescale"]
    else:
        assert not contour["reversescale"]

    # When `target` is not `None`, `reversescale` is always `True`.
    contour = plot_contour(study, target=lambda t: t.number).data[0]
    assert COLOR_SCALE == [v[1] for v in contour["colorscale"]]
    assert contour["reversescale"]

    # Multi-objective optimization.
    study = prepare_study_with_trials(with_c_d=False,
                                      n_objectives=2,
                                      direction=direction)
    contour = plot_contour(study, target=lambda t: t.number).data[0]
    assert COLOR_SCALE == [v[1] for v in contour["colorscale"]]
    assert contour["reversescale"]
Exemple #7
0
    def __call__(self, study, trial):
        import optuna.visualization as vis

        self.exp.log_metric('run_score', trial.value)
        self.exp.log_metric('best_so_far_run_score', study.best_value)
        self.exp.log_text('run_parameters', str(trial.params))

        if self.log_study:
            pickle_and_log_artifact(study, 'study.pkl', experiment=self.exp)

        if self.log_optimization_history:
            log_chart(name='optimization_history', chart=vis.plot_optimization_history(study), experiment=self.exp)
        if self.log_contour:
            log_chart(name='contour', chart=vis.plot_contour(study, params=self.params), experiment=self.exp)
        if self.log_parallel_coordinate:
            log_chart(name='parallel_coordinate', chart=vis.plot_parallel_coordinate(study, params=self.params),
                      experiment=self.exp)
        if self.log_slice:
            log_chart(name='slice', chart=vis.plot_slice(study, params=self.params), experiment=self.exp)
Exemple #8
0
def draw_results(study):
    # 优化历史
    plt.figure()
    fig = pv.plot_optimization_history(study)
    fig.write_image("./output/opt_his.png")
    plt.close()
    # 等高线图
    plt.figure()
    fig = pv.plot_contour(study)
    fig.write_image("./output/opt_contour.png")
    plt.close()
    # 经验分布图
    plt.figure()
    fig = pv.plot_edf(study)
    fig.write_image("./output/opt_edf.png")
    plt.close()
    # 高维参数
    plt.figure()
    fig = pv.plot_parallel_coordinate(study)
    fig.write_image("./output/opt_coordinate.png")
    plt.close()
Exemple #9
0
def test_plot_contour_mixture_category_types() -> None:
    study = create_study()
    study.add_trial(
        create_trial(
            value=0.0,
            params={
                "param_a": None,
                "param_b": 101
            },
            distributions={
                "param_a": CategoricalDistribution([None, "100"]),
                "param_b": CategoricalDistribution([101, 102.0]),
            },
        ))
    study.add_trial(
        create_trial(
            value=0.5,
            params={
                "param_a": "100",
                "param_b": 102.0
            },
            distributions={
                "param_a": CategoricalDistribution([None, "100"]),
                "param_b": CategoricalDistribution([101, 102.0]),
            },
        ))
    figure = plot_contour(study)

    # yaxis is treated as non-categorical
    if version.parse(plotly.__version__) >= version.parse("4.12.0"):
        assert figure.layout["xaxis"]["range"] == (-0.05, 1.05)
        assert figure.layout["yaxis"]["range"] == (100.95, 102.05)
    else:
        assert figure.layout["xaxis"]["range"] == ("100", "None")
        assert figure.layout["yaxis"]["range"] == (100.95, 102.05)
    assert figure.layout["xaxis"]["type"] == "category"
    assert figure.layout["yaxis"]["type"] != "category"
Exemple #10
0
def test_plot_contour_log_scale():
    # type: () -> None

    # If the search space has two parameters, plot_contour generates a single plot.
    study = create_study()
    study.add_trial(
        create_trial(
            value=0.0,
            params={"param_a": 1e-6, "param_b": 1e-4,},
            distributions={
                "param_a": LogUniformDistribution(1e-7, 1e-2),
                "param_b": LogUniformDistribution(1e-5, 1e-1),
            },
        )
    )
    study.add_trial(
        create_trial(
            value=1.0,
            params={"param_a": 1e-5, "param_b": 1e-3,},
            distributions={
                "param_a": LogUniformDistribution(1e-7, 1e-2),
                "param_b": LogUniformDistribution(1e-5, 1e-1),
            },
        )
    )

    figure = plot_contour(study)
    assert figure.layout["xaxis"]["range"] == (-6, -5)
    assert figure.layout["yaxis"]["range"] == (-4, -3)
    assert figure.layout["xaxis_type"] == "log"
    assert figure.layout["yaxis_type"] == "log"

    # If the search space has three parameters, plot_contour generates nine plots.
    study = create_study()
    study.add_trial(
        create_trial(
            value=0.0,
            params={"param_a": 1e-6, "param_b": 1e-4, "param_c": 1e-2,},
            distributions={
                "param_a": LogUniformDistribution(1e-7, 1e-2),
                "param_b": LogUniformDistribution(1e-5, 1e-1),
                "param_c": LogUniformDistribution(1e-3, 10),
            },
        )
    )
    study.add_trial(
        create_trial(
            value=1.0,
            params={"param_a": 1e-5, "param_b": 1e-3, "param_c": 1e-1,},
            distributions={
                "param_a": LogUniformDistribution(1e-7, 1e-2),
                "param_b": LogUniformDistribution(1e-5, 1e-1),
                "param_c": LogUniformDistribution(1e-3, 10),
            },
        )
    )

    figure = plot_contour(study)
    param_a_range = (-6, -5)
    param_b_range = (-4, -3)
    param_c_range = (-2, -1)
    axis_to_range = {
        "xaxis": param_a_range,
        "xaxis2": param_b_range,
        "xaxis3": param_c_range,
        "xaxis4": param_a_range,
        "xaxis5": param_b_range,
        "xaxis6": param_c_range,
        "xaxis7": param_a_range,
        "xaxis8": param_b_range,
        "xaxis9": param_c_range,
        "yaxis": param_a_range,
        "yaxis2": param_a_range,
        "yaxis3": param_a_range,
        "yaxis4": param_b_range,
        "yaxis5": param_b_range,
        "yaxis6": param_b_range,
        "yaxis7": param_c_range,
        "yaxis8": param_c_range,
        "yaxis9": param_c_range,
    }

    for axis, param_range in axis_to_range.items():
        assert figure.layout[axis]["range"] == param_range
        assert figure.layout[axis]["type"] == "log"
###################################################################################################
# Visualize the learning curves of the trials. See :func:`~optuna.visualization.plot_intermediate_values` for the details.
plot_intermediate_values(study)

###################################################################################################
# Visualize high-dimensional parameter relationships. See :func:`~optuna.visualization.plot_parallel_coordinate` for the details.
plot_parallel_coordinate(study)

###################################################################################################
# Select parameters to visualize.
plot_parallel_coordinate(study, params=["bagging_freq", "bagging_fraction"])

###################################################################################################
# Visualize hyperparameter relationships. See :func:`~optuna.visualization.plot_contour` for the details.
plot_contour(study)

###################################################################################################
# Select parameters to visualize.
plot_contour(study, params=["bagging_freq", "bagging_fraction"])

###################################################################################################
# Visualize individual hyperparameters as slice plot. See :func:`~optuna.visualization.plot_slice` for the details.
plot_slice(study)

###################################################################################################
# Select parameters to visualize.
plot_slice(study, params=["bagging_freq", "bagging_fraction"])

###################################################################################################
# Visualize parameter importances. See :func:`~optuna.visualization.plot_param_importances` for the details.
Exemple #12
0
if __name__ == "__main__":

    study = optuna.create_study(direction="maximize",
                                pruner=optuna.pruners.MedianPruner())
    study.optimize(objective, n_trials=100, timeout=600)

    # Visualize the optimization history.
    plot_optimization_history(study).show()

    # Visualize the learning curves of the trials.
    plot_intermediate_values(study).show()

    # Visualize high-dimensional parameter relationships.
    plot_parallel_coordinate(study).show()

    # Select parameters to visualize.
    plot_parallel_coordinate(study, params=["lr_init", "n_units_l0"]).show()

    # Visualize hyperparameter relationships.
    plot_contour(study).show()

    # Select parameters to visualize.
    plot_contour(study, params=["n_units_l0", "n_units_l1"]).show()

    # Visualize individual hyperparameters.
    plot_slice(study).show()

    # Select parameters to visualize.
    plot_slice(study, params=["n_units_l0", "n_units_l1"]).show()
Exemple #13
0
    sampler = optuna.samplers.TPESampler(n_startup_trials=10)
    study = optuna.create_study(study_name=study_name,
                                sampler=sampler,
                                storage=storage,
                                load_if_exists=True)
    study.optimize(objective, n_trials, gc_after_trial=True)

    print("Best trial:")
    trial = study.best_trial

    print("  Value: ", trial.value)

    print("  Params: ")
    for key, value in trial.params.items():
        print("    {}: {}".format(key, value))

    # Visualization of results
    fig = plot_optimization_history(study)
    fig.write_image("Plots/optuna_optimization_history.png")

    fig = plot_contour(study, params=["learning_rate", "weight_decay",
                                      "k_nn"])  #, "use_model"])
    fig.write_image("Plots/optuna_contour.png")

    fig = plot_param_importances(study)
    fig.write_image("Plots/plot_param_importances.png")

    print("Finished. Time elapsed:",
          datetime.timedelta(seconds=time.time() - time_ini))
Exemple #14
0
def test_plot_contour_log_scale_and_str_category() -> None:

    # If the search space has two parameters, plot_contour generates a single plot.
    study = create_study()
    study.add_trial(
        create_trial(
            value=0.0,
            params={
                "param_a": 1e-6,
                "param_b": "100"
            },
            distributions={
                "param_a": LogUniformDistribution(1e-7, 1e-2),
                "param_b": CategoricalDistribution(["100", "101"]),
            },
        ))
    study.add_trial(
        create_trial(
            value=1.0,
            params={
                "param_a": 1e-5,
                "param_b": "101"
            },
            distributions={
                "param_a": LogUniformDistribution(1e-7, 1e-2),
                "param_b": CategoricalDistribution(["100", "101"]),
            },
        ))

    figure = plot_contour(study)
    assert figure.layout["xaxis"]["range"] == (-6.05, -4.95)
    assert figure.layout["yaxis"]["range"] == ("100", "101")
    assert figure.layout["xaxis_type"] == "log"
    assert figure.layout["yaxis_type"] == "category"

    # If the search space has three parameters, plot_contour generates nine plots.
    study = create_study()
    study.add_trial(
        create_trial(
            value=0.0,
            params={
                "param_a": 1e-6,
                "param_b": "100",
                "param_c": "one"
            },
            distributions={
                "param_a": LogUniformDistribution(1e-7, 1e-2),
                "param_b": CategoricalDistribution(["100", "101"]),
                "param_c": CategoricalDistribution(["one", "two"]),
            },
        ))
    study.add_trial(
        create_trial(
            value=1.0,
            params={
                "param_a": 1e-5,
                "param_b": "101",
                "param_c": "two"
            },
            distributions={
                "param_a": LogUniformDistribution(1e-7, 1e-2),
                "param_b": CategoricalDistribution(["100", "101"]),
                "param_c": CategoricalDistribution(["one", "two"]),
            },
        ))

    figure = plot_contour(study)
    param_a_range = (-6.05, -4.95)
    param_b_range = ("100", "101")
    param_c_range = ("one", "two")
    param_a_type = "log"
    param_b_type = "category"
    param_c_type = None
    axis_to_range_and_type = {
        "xaxis": (param_a_range, param_a_type),
        "xaxis2": (param_b_range, param_b_type),
        "xaxis3": (param_c_range, param_c_type),
        "xaxis4": (param_a_range, param_a_type),
        "xaxis5": (param_b_range, param_b_type),
        "xaxis6": (param_c_range, param_c_type),
        "xaxis7": (param_a_range, param_a_type),
        "xaxis8": (param_b_range, param_b_type),
        "xaxis9": (param_c_range, param_c_type),
        "yaxis": (param_a_range, param_a_type),
        "yaxis2": (param_a_range, param_a_type),
        "yaxis3": (param_a_range, param_a_type),
        "yaxis4": (param_b_range, param_b_type),
        "yaxis5": (param_b_range, param_b_type),
        "yaxis6": (param_b_range, param_b_type),
        "yaxis7": (param_c_range, param_c_type),
        "yaxis8": (param_c_range, param_c_type),
        "yaxis9": (param_c_range, param_c_type),
    }

    for axis, (param_range, param_type) in axis_to_range_and_type.items():
        assert figure.layout[axis]["range"] == param_range
        assert figure.layout[axis]["type"] == param_type
Exemple #15
0
def log_study_info(study, experiment=None,
                   log_study=True,
                   log_charts=True,
                   log_optimization_history=False,
                   log_contour=False,
                   log_parallel_coordinate=False,
                   log_slice=False,
                   params=None):
    """Logs runs results and parameters to neptune.

    Logs all hyperparameter optimization results to Neptune. Those include best score ('best_score' metric),
    best parameters ('best_parameters' property), the study object itself as artifact, and interactive optuna charts
    ('contour', 'parallel_coordinate', 'slice', 'optimization_history') as artifacts in 'charts' sub folder.

    Args:
        study('optuna.study.Study'): Optuna study object after training is completed.
        experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None.
        log_study('bool'): Whether optuna study object should be logged as pickle. Default is True.
        log_charts('bool'): Deprecated argument. Whether all optuna visualizations charts should be logged.
            By default all charts are sent.
            To not log any charts set log_charts=False.
            If you want to log a particular chart change the argument for that chart explicitly.
            For example log_charts=False and log_slice=True will log only the slice plot to Neptune.
        log_optimization_history('bool'): Whether optuna optimization history chart should be logged. Default is True.
        log_contour('bool'): Whether optuna contour plot should be logged. Default is True.
        log_parallel_coordinate('bool'): Whether optuna parallel coordinate plot should be logged. Default is True.
        log_slice('bool'): Whether optuna slice chart should be logged. Default is True.
        params(`list`): List of parameters to be visualized. Default is all parameters.

    Examples:
        Initialize neptune_monitor::

            import neptune
            import neptunecontrib.monitoring.optuna as opt_utils

            neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME')
            neptune.create_experiment(name='optuna sweep')

            neptune_callback = opt_utils.NeptuneCallback()

        Run Optuna training passing monitor as callback::

            ...
            study = optuna.create_study(direction='maximize')
            study.optimize(objective, n_trials=100, callbacks=[neptune_callback])
            opt_utils.log_study_info(study)

        You can explore an example experiment in Neptune:
        https://ui.neptune.ai/o/shared/org/showroom/e/SHOW-1016/artifacts
     """
    import optuna.visualization as vis

    _exp = experiment if experiment else neptune

    _exp.log_metric('best_score', study.best_value)
    _exp.set_property('best_parameters', study.best_params)

    if log_charts:
        message = """log_charts argument is depraceted and will be removed in future releases.
        Please use log_optimization_history, log_contour, log_parallel_coordinate, log_slice, arguments explicitly.
        """
        warnings.warn(message)

        log_optimization_history = True
        log_contour = True
        log_parallel_coordinate = True
        log_slice = True

    if log_study:
        pickle_and_log_artifact(study, 'study.pkl', experiment=_exp)
    if log_optimization_history:
        log_chart(name='optimization_history', chart=vis.plot_optimization_history(study), experiment=_exp)
    if log_contour:
        log_chart(name='contour', chart=vis.plot_contour(study, params=params), experiment=_exp)
    if log_parallel_coordinate:
        log_chart(name='parallel_coordinate', chart=vis.plot_parallel_coordinate(study, params=params), experiment=_exp)
    if log_slice:
        log_chart(name='slice', chart=vis.plot_slice(study, params=params), experiment=_exp)
Exemple #16
0
def test_target_is_none_and_study_is_multi_obj() -> None:

    study = create_study(directions=["minimize", "minimize"])
    with pytest.raises(ValueError):
        plot_contour(study)
Exemple #17
0
def ml_mlp_mul_ms(station_name="종로구"):
    print("Start Multivariate MLP Mean Seasonality Decomposition (MSE) Model")
    targets = ["PM10", "PM25"]
    # targets = ["SO2", "CO", "O3", "NO2", "PM10", "PM25",
    #                   "temp", "u", "v", "pres", "humid", "prep", "snow"]
    # 24*14 = 336
    #sample_size = 336
    sample_size = 48
    output_size = 24
    # If you want to debug, fast_dev_run = True and n_trials should be small number
    fast_dev_run = False
    n_trials = 128
    # fast_dev_run = True
    # n_trials = 1

    # Hyper parameter
    epoch_size = 500
    batch_size = 64
    learning_rate = 1e-3

    # Blocked Cross Validation
    # neglect small overlap between train_dates and valid_dates
    # 11y = ((2y, 0.5y), (2y, 0.5y), (2y, 0.5y), (2.5y, 1y))
    train_dates = [(dt.datetime(2008, 1, 4, 1).astimezone(SEOULTZ),
                    dt.datetime(2009, 12, 31, 23).astimezone(SEOULTZ)),
                   (dt.datetime(2010, 7, 1, 0).astimezone(SEOULTZ),
                    dt.datetime(2012, 6, 30, 23).astimezone(SEOULTZ)),
                   (dt.datetime(2013, 1, 1, 0).astimezone(SEOULTZ),
                    dt.datetime(2014, 12, 31, 23).astimezone(SEOULTZ)),
                   (dt.datetime(2015, 7, 1, 0).astimezone(SEOULTZ),
                    dt.datetime(2017, 12, 31, 23).astimezone(SEOULTZ))]
    valid_dates = [(dt.datetime(2010, 1, 1, 0).astimezone(SEOULTZ),
                    dt.datetime(2010, 6, 30, 23).astimezone(SEOULTZ)),
                   (dt.datetime(2012, 7, 1, 0).astimezone(SEOULTZ),
                    dt.datetime(2012, 12, 31, 23).astimezone(SEOULTZ)),
                   (dt.datetime(2015, 1, 1, 0).astimezone(SEOULTZ),
                    dt.datetime(2015, 6, 30, 23).astimezone(SEOULTZ)),
                   (dt.datetime(2018, 1, 1, 0).astimezone(SEOULTZ),
                    dt.datetime(2018, 12, 31, 23).astimezone(SEOULTZ))]
    train_valid_fdate = dt.datetime(2008, 1, 3, 1).astimezone(SEOULTZ)
    train_valid_tdate = dt.datetime(2018, 12, 31, 23).astimezone(SEOULTZ)

    # Debug
    if fast_dev_run:
        train_dates = [(dt.datetime(2015, 7, 1, 0).astimezone(SEOULTZ),
                        dt.datetime(2017, 12, 31, 23).astimezone(SEOULTZ))]
        valid_dates = [(dt.datetime(2018, 1, 1, 0).astimezone(SEOULTZ),
                        dt.datetime(2018, 12, 31, 23).astimezone(SEOULTZ))]
        train_valid_fdate = dt.datetime(2015, 7, 1, 0).astimezone(SEOULTZ)
        train_valid_tdate = dt.datetime(2018, 12, 31, 23).astimezone(SEOULTZ)

    test_fdate = dt.datetime(2019, 1, 1, 0).astimezone(SEOULTZ)
    test_tdate = dt.datetime(2020, 10, 31, 23).astimezone(SEOULTZ)

    # check date range assumption
    assert len(train_dates) == len(valid_dates)
    for i, (td, vd) in enumerate(zip(train_dates, valid_dates)):
        assert vd[0] > td[1]
    assert test_fdate > train_dates[-1][1]
    assert test_fdate > valid_dates[-1][1]

    train_features = [
        "SO2", "CO", "NO2", "PM10", "PM25", "temp", "wind_spd", "wind_cdir",
        "wind_sdir", "pres", "humid", "prep"
    ]
    train_features_periodic = [
        "SO2", "CO", "NO2", "PM10", "PM25", "temp", "wind_spd", "wind_cdir",
        "wind_sdir", "pres", "humid"
    ]
    train_features_nonperiodic = ["prep"]

    for target in targets:
        print("Training " + target + "...")
        output_dir = Path(
            f"/mnt/data/MLPMSMultivariate/{station_name}/{target}/")
        Path.mkdir(output_dir, parents=True, exist_ok=True)
        model_dir = output_dir / "models"
        Path.mkdir(model_dir, parents=True, exist_ok=True)
        log_dir = output_dir / "log"
        Path.mkdir(log_dir, parents=True, exist_ok=True)

        _df_h = data.load_imputed(HOURLY_DATA_PATH)
        df_h = _df_h.query('stationCode == "' +
                           str(SEOUL_STATIONS[station_name]) + '"')

        if station_name == '종로구' and \
            not Path("/input/python/input_jongno_imputed_hourly_pandas.csv").is_file():
            # load imputed result

            df_h.to_csv("/input/python/input_jongno_imputed_hourly_pandas.csv")

        # construct dataset for seasonality
        print("Construct Train/Validation Sets...", flush=True)
        train_valid_dataset = construct_dataset(train_valid_fdate,
                                                train_valid_tdate,
                                                filepath=HOURLY_DATA_PATH,
                                                station_name=station_name,
                                                target=target,
                                                sample_size=sample_size,
                                                output_size=output_size,
                                                transform=False)
        # compute seasonality
        train_valid_dataset.preprocess()

        # For Block Cross Validation..
        # load dataset in given range dates and transform using scaler from train_valid_set
        # all dataset are saved in tuple
        print("Construct Training Sets...", flush=True)
        train_datasets = tuple(
            construct_dataset(td[0],
                              td[1],
                              scaler_X=train_valid_dataset.scaler_X,
                              scaler_Y=train_valid_dataset.scaler_Y,
                              filepath=HOURLY_DATA_PATH,
                              station_name=station_name,
                              target=target,
                              sample_size=sample_size,
                              output_size=output_size,
                              features=train_features,
                              features_periodic=train_features_periodic,
                              features_nonperiodic=train_features_nonperiodic,
                              transform=True) for td in train_dates)

        print("Construct Validation Sets...", flush=True)
        valid_datasets = tuple(
            construct_dataset(vd[0],
                              vd[1],
                              scaler_X=train_valid_dataset.scaler_X,
                              scaler_Y=train_valid_dataset.scaler_Y,
                              filepath=HOURLY_DATA_PATH,
                              station_name=station_name,
                              target=target,
                              sample_size=sample_size,
                              output_size=output_size,
                              features=train_features,
                              features_periodic=train_features_periodic,
                              features_nonperiodic=train_features_nonperiodic,
                              transform=True) for vd in valid_dates)

        # just single test set
        print("Construct Test Sets...", flush=True)
        test_dataset = construct_dataset(
            test_fdate,
            test_tdate,
            scaler_X=train_valid_dataset.scaler_X,
            scaler_Y=train_valid_dataset.scaler_Y,
            filepath=HOURLY_DATA_PATH,
            station_name=station_name,
            target=target,
            sample_size=sample_size,
            output_size=output_size,
            features=train_features,
            features_periodic=train_features_periodic,
            features_nonperiodic=train_features_nonperiodic,
            transform=True)

        # convert tuple of datasets to ConcatDataset
        train_dataset = ConcatDataset(train_datasets)
        val_dataset = ConcatDataset(valid_datasets)

        # num_layer == number of hidden layer
        hparams = Namespace(num_layers=1,
                            layer_size=128,
                            learning_rate=learning_rate,
                            batch_size=batch_size)

        def objective(trial):
            model = BaseMLPModel(
                trial=trial,
                hparams=hparams,
                input_size=sample_size * len(train_features),
                sample_size=sample_size,
                output_size=output_size,
                station_name=station_name,
                target=target,
                features=train_features,
                features_periodic=train_features_periodic,
                features_nonperiodic=train_features_nonperiodic,
                train_dataset=train_dataset,
                val_dataset=val_dataset,
                test_dataset=test_dataset,
                scaler_X=train_valid_dataset.scaler_X,
                scaler_Y=train_valid_dataset.scaler_Y,
                output_dir=output_dir)

            # most basic trainer, uses good defaults
            trainer = Trainer(gpus=1 if torch.cuda.is_available() else None,
                              precision=32,
                              min_epochs=1,
                              max_epochs=20,
                              default_root_dir=output_dir,
                              fast_dev_run=fast_dev_run,
                              logger=True,
                              checkpoint_callback=False,
                              callbacks=[
                                  PyTorchLightningPruningCallback(
                                      trial, monitor="valid/MSE")
                              ])

            trainer.fit(model)

            # Don't Log
            # hyperparameters = model.hparams
            # trainer.logger.log_hyperparams(hyperparameters)

            return trainer.callback_metrics.get("valid/MSE")

        if n_trials > 1:
            study = optuna.create_study(direction="minimize")
            study.enqueue_trial({
                'sigma': 1.3,
                'num_layers': 4,
                'layer_size': 8,
                'learning_rate': learning_rate,
                'batch_size': batch_size
            })
            study.enqueue_trial({
                'sigma': 1.3,
                'num_layers': 4,
                'layer_size': 32,
                'learning_rate': learning_rate,
                'batch_size': batch_size
            })
            study.enqueue_trial({
                'sigma': 1.3,
                'num_layers': 4,
                'layer_size': 64,
                'learning_rate': learning_rate,
                'batch_size': batch_size
            })
            study.enqueue_trial({
                'sigma': 1.3,
                'num_layers': 4,
                'layer_size': 32,
                'learning_rate': learning_rate,
                'batch_size': batch_size
            })
            study.enqueue_trial({
                'sigma': 1.3,
                'num_layers': 8,
                'layer_size': 32,
                'learning_rate': learning_rate,
                'batch_size': batch_size
            })
            study.enqueue_trial({
                'sigma': 1.3,
                'num_layers': 12,
                'layer_size': 32,
                'learning_rate': learning_rate,
                'batch_size': batch_size
            })
            study.enqueue_trial({
                'sigma': 0.7,
                'num_layers': 4,
                'layer_size': 32,
                'learning_rate': learning_rate,
                'batch_size': batch_size
            })
            study.enqueue_trial({
                'sigma': 2.0,
                'num_layers': 4,
                'layer_size': 32,
                'learning_rate': learning_rate,
                'batch_size': batch_size
            })
            # timeout = 3600*36 = 36h
            study.optimize(objective, n_trials=n_trials, timeout=3600 * 36)

            trial = study.best_trial

            print("  Value: ", trial.value)

            print("  Params: ")
            for key, value in trial.params.items():
                print("    {}: {}".format(key, value))
            print("sample_size : ", sample_size)
            print("output_size : ", output_size)

            # plot optmization results
            fig_cont1 = optv.plot_contour(study,
                                          params=['num_layers', 'layer_size'])
            fig_cont1.write_image(
                str(output_dir / "contour_num_layers_layer_size.png"))
            fig_cont1.write_image(
                str(output_dir / "contour_num_layers_layer_size.svg"))

            fig_edf = optv.plot_edf(study)
            fig_edf.write_image(str(output_dir / "edf.png"))
            fig_edf.write_image(str(output_dir / "edf.svg"))

            fig_iv = optv.plot_intermediate_values(study)
            fig_iv.write_image(str(output_dir / "intermediate_values.png"))
            fig_iv.write_image(str(output_dir / "intermediate_values.svg"))

            fig_his = optv.plot_optimization_history(study)
            fig_his.write_image(str(output_dir / "opt_history.png"))
            fig_his.write_image(str(output_dir / "opt_history.svg"))

            fig_pcoord = optv.plot_parallel_coordinate(
                study, params=['num_layers', 'layer_size'])
            fig_pcoord.write_image(str(output_dir / "parallel_coord.png"))
            fig_pcoord.write_image(str(output_dir / "parallel_coord.svg"))

            fig_slice = optv.plot_slice(study,
                                        params=['num_layers', 'layer_size'])
            fig_slice.write_image(str(output_dir / "slice.png"))
            fig_slice.write_image(str(output_dir / "slice.svg"))

            # set hparams with optmized value
            hparams.num_layers = trial.params['num_layers']
            hparams.layer_size = trial.params['layer_size']

            dict_hparams = copy.copy(vars(hparams))
            dict_hparams["sample_size"] = sample_size
            dict_hparams["output_size"] = output_size
            with open(output_dir / 'hparams.json', 'w') as f:
                print(dict_hparams, file=f)
            with open(output_dir / 'hparams.csv', 'w') as f:
                print(pd.DataFrame.from_dict(dict_hparams, orient='index'),
                      file=f)

        model = BaseMLPModel(hparams=hparams,
                             input_size=sample_size * len(train_features),
                             sample_size=sample_size,
                             output_size=output_size,
                             station_name=station_name,
                             target=target,
                             features=train_features,
                             features_periodic=train_features_periodic,
                             features_nonperiodic=train_features_nonperiodic,
                             train_dataset=train_dataset,
                             val_dataset=val_dataset,
                             test_dataset=test_dataset,
                             scaler_X=train_valid_dataset.scaler_X,
                             scaler_Y=train_valid_dataset.scaler_Y,
                             output_dir=output_dir)

        # record input
        for i, _train_set in enumerate(train_datasets):
            _train_set.to_csv(
                model.data_dir /
                ("df_trainset_{0}_".format(str(i).zfill(2)) + target + ".csv"))
        for i, _valid_set in enumerate(valid_datasets):
            _valid_set.to_csv(
                model.data_dir /
                ("df_validset_{0}_".format(str(i).zfill(2)) + target + ".csv"))
        train_valid_dataset.to_csv(model.data_dir /
                                   ("df_trainvalidset_" + target + ".csv"))
        test_dataset.to_csv(model.data_dir / ("df_testset_" + target + ".csv"))

        checkpoint_callback = pl.callbacks.ModelCheckpoint(os.path.join(
            model_dir, "train_{epoch}_{valid/MSE:.2f}"),
                                                           monitor="valid/MSE",
                                                           period=10)

        early_stop_callback = EarlyStopping(monitor='valid/MSE',
                                            min_delta=0.001,
                                            patience=30,
                                            verbose=True,
                                            mode='min')

        log_version = dt.date.today().strftime("%y%m%d-%H-%M")
        loggers = [ \
            TensorBoardLogger(log_dir, version=log_version),
            CSVLogger(log_dir, version=log_version)]

        # most basic trainer, uses good defaults
        trainer = Trainer(gpus=1 if torch.cuda.is_available() else None,
                          precision=32,
                          min_epochs=1,
                          max_epochs=epoch_size,
                          default_root_dir=output_dir,
                          fast_dev_run=fast_dev_run,
                          logger=loggers,
                          log_every_n_steps=5,
                          flush_logs_every_n_steps=10,
                          callbacks=[early_stop_callback],
                          checkpoint_callback=checkpoint_callback)

        trainer.fit(model)

        # run test set
        trainer.test(ckpt_path=None)

        shutil.rmtree(model_dir)
Exemple #18
0
best_model_predict = best_model.predict(x_test)
print('\nBest Model performance at competition:')
print(
    'RMSE: {:.4f} (should be lower than the trivial predictor using the mean MSE: {:.4f})'
    .format(
        math.sqrt(metrics.mean_squared_error(y_test, best_model_predict)),
        math.sqrt(
            metrics.mean_squared_error(
                y_test, [y_test.mean() for i in range(len(y_test))]))))
print(
    'R square: {:.4f} (should be higher than the trivial predictor using the mean: R square {:.4f})'
    .format(
        metrics.r2_score(y_test, best_model_predict),
        metrics.r2_score(y_test, [y_test.mean() for i in range(len(y_test))])))

#3.8 Final model train
best_model.fit(x, y)
y_comp = [math.exp(i) for i in best_model.predict(x_comp)]

submission = pd.DataFrame(columns=['Id', 'SalePrice'])
submission['Id'] = pd.Series(range(1461, 2920))
submission['SalePrice'] = pd.Series(y_comp)
submission.to_csv('submission.csv', index=False)

#3.9 Optuna visualization
ov.plot_optimization_history(knn_optuna).show()
#ov.plot_parallel_coordinate(knn_optuna).show()
ov.plot_contour(knn_optuna).show()
ov.plot_slice(knn_optuna).show()
ov.plot_param_importances(knn_optuna).show()
#ov.plot_edf(knn_optuna).show()
Exemple #19
0
 def show_contour(self, params=None):
     return visualization.plot_contour(self.study, params=params)