Exemple #1
0
    def update(self, space: Space, function: Function, iteration: int,
               n_iterations: int) -> None:
        """Wraps Henry Gas Solubility Optimization over all agents and variables.

        Args:
            space: Space containing agents and update-related information.
            function: A Function object that will be used as the objective function.
            iteration: Current iteration.
            n_iterations: Maximum number of iterations.

        """

        # Creates n-wise clusters
        clusters = g.n_wise(space.agents, self.pressure.shape[1])

        # Iterates through all clusters
        for i, cluster in enumerate(clusters):
            # Calculates the system's current temperature (eq. 8)
            T = np.exp(-iteration / n_iterations)

            # Updates Henry's coefficient (eq. 8)
            self.coefficient[i] *= np.exp(-self.constant[i] *
                                          (1 / T - 1 / 298.15))

            # Transforms the cluster into a list and sorts it
            cluster = list(cluster)
            cluster.sort(key=lambda x: x.fit)

            # Iterates through all agents in cluster
            for j, agent in enumerate(cluster):
                # Calculates agent's solubility (eq. 9)
                solubility = self.K * self.coefficient[i] * self.pressure[i][j]

                # Updates agent's position (eq. 10)
                agent.position = self._update_position(agent, cluster[0],
                                                       space.best_agent,
                                                       solubility)

                # Clips agent's limits
                agent.clip_by_bound()

                # Re-calculates its fitness
                agent.fit = function(agent.position)

        # Re-sorts the whole space
        space.agents.sort(key=lambda x: x.fit)

        # Generates a uniform random number
        r1 = r.generate_uniform_random_number()

        # Calculates the number of worst agents (eq. 11)
        N = int(len(space.agents) * (r1 * (0.2 - 0.1) + 0.1))

        # Iterates through every bad agent
        for agent in space.agents[-N:]:
            # Generates another uniform random number
            r2 = r.generate_uniform_random_number()

            # Updates bad agent's position (eq. 12)
            agent.position = agent.lb + r2 * (agent.ub - agent.lb)
Exemple #2
0
def test_n_wise():
    list = [1, 2, 3, 4]

    pairs = general.n_wise(list)

    for _ in pairs:
        pass

    assert type(pairs).__name__ == 'callable_iterator' or 'generator'
Exemple #3
0
    def _update(self, agents, function):
        """Method that wraps selection, crossover and mutation over all agents and variables.

        Args:
            agents (list): List of agents.
            function (Function): A Function object that will be used as the objective function.

        """

        # Creating a list to hold the new population
        new_agents = []

        # Retrieving the number of agents
        n_agents = len(agents)

        # Calculates a list of fitness from every agent
        fitness = [agent.fit + c.EPSILON for agent in agents]

        # Selects the parents
        selected = self._roulette_selection(n_agents, fitness)

        # For every pair of selected parents
        for s in g.n_wise(selected):
            # Performs the crossover
            alpha, beta = self._crossover(agents[s[0]], agents[s[1]])

            # Performs the mutation
            alpha, beta = self._mutation(alpha, beta)

            # Checking `alpha` limits
            alpha.clip_limits()

            # Checking `beta` limits
            beta.clip_limits()

            # Calculates new fitness for `alpha`
            alpha.fit = function(alpha.position)

            # Calculates new fitness for `beta`
            beta.fit = function(beta.position)

            # Appends the mutated agents to the children
            new_agents.extend([alpha, beta])

        # Joins both populations
        agents += new_agents

        # Sorting agents
        agents.sort(key=lambda x: x.fit)

        return agents[:n_agents]
Exemple #4
0
    def _crossover(self, space):
        """Crossover a number of individuals pre-selected through a tournament procedure (p. 101).

        Args:
            space (TreeSpace): A TreeSpace object.
            agents (list): Current iteration agents.
            trees (list): Current iteration trees.

        """

        # Calculates a list of current trees' fitness
        fitness = [agent.fit for agent in space.agents]

        # Number of individuals to be crossovered
        n_individuals = int(space.n_trees * self.p_crossover)

        # Checks if `n_individuals` is an odd number
        if n_individuals % 2 != 0:
            # If it is, increase it by one
            n_individuals += 1

        # Gathers a list of selected individuals to be replaced
        selected = g.tournament_selection(fitness, n_individuals)

        # For every pair in selected individuals
        for s in g.n_wise(selected):
            # Calculates the amount of father nodes
            father_nodes = space.trees[s[0]].n_nodes

            # Calculate the amount of mother nodes
            mother_nodes = space.trees[s[1]].n_nodes

            # Checks if both trees have more than one node
            if (father_nodes > 1) and (mother_nodes > 1):
                # Prunning father nodes
                max_f_nodes = self._prune_nodes(father_nodes)

                # Prunning mother nodes
                max_m_nodes = self._prune_nodes(mother_nodes)

                # Apply the crossover operation
                space.trees[s[0]], space.trees[s[1]] = self._cross(
                    space.trees[s[0]], space.trees[s[1]], max_f_nodes,
                    max_m_nodes)
Exemple #5
0
    def update(self, space: Space, function: Function) -> None:
        """Wraps Genetic Algorithm over all agents and variables.

        Args:
            space: Space containing agents and update-related information.
            function: A Function object that will be used as the objective function.

        """

        # Creates a list to hold the new population
        new_agents = []

        # Retrieves the number of agents
        n_agents = len(space.agents)

        # Calculates a list of fitness from every agent
        fitness = [agent.fit + c.EPSILON for agent in space.agents]

        # Selects the parents
        selected = self._roulette_selection(n_agents, fitness)

        # For every pair of selected parents
        for s in g.n_wise(selected):
            # Performs the crossover and mutation
            alpha, beta = self._crossover(space.agents[s[0]],
                                          space.agents[s[1]])
            alpha, beta = self._mutation(alpha, beta)

            # Checking `alpha` and `beta` limits
            alpha.clip_by_bound()
            beta.clip_by_bound()

            # Calculates new fitness for `alpha` and `beta`
            alpha.fit = function(alpha.position)
            beta.fit = function(beta.position)

            # Appends the mutated agents to the children
            new_agents.extend([alpha, beta])

        # Joins both populations, sort agents and gathers best `n_agents`
        space.agents += new_agents
        space.agents.sort(key=lambda x: x.fit)
        space.agents = space.agents[:n_agents]
Exemple #6
0
    def _update(self, agents, best_agent, function, coefficient, pressure,
                constant, iteration, n_iterations):
        """Method that wraps Henry Gas Solubility Optimization over all agents and variables.

        Args:
            agents (list): List of agents.
            best_agent (Agent): Global best agent.
            function (Function): A Function object that will be used as the objective function.
            coefficient (np.array): Henry's coefficient array.
            pressure (np.array): Partial pressure array.
            constant (np.array): Constants array.
            iteration (int): Current iteration.
            n_iterations (int): Maximum number of iterations.

        """

        # Creates n-wise clusters
        clusters = g.n_wise(agents, pressure.shape[1])

        # Iterates through all clusters
        for i, cluster in enumerate(clusters):
            # Calculates the system's current temperature (eq. 8)
            T = np.exp(-iteration / n_iterations)

            # Updates Henry's coefficient (eq. 8)
            coefficient[i] *= np.exp(-constant[i] * (1 / T - 1 / 298.15))

            # Transforms the cluster into a list and sorts it
            cluster = list(cluster)
            cluster.sort(key=lambda x: x.fit)

            # Iterates through all agents in cluster
            for j, agent in enumerate(cluster):
                # Calculates agent's solubility (eq. 9)
                solubility = self.K * coefficient[i] * pressure[i][j]

                # Updates agent's position (eq. 10)
                agent.position = self._update_position(agent, cluster[0],
                                                       best_agent, solubility)

                # Clips agent's limits
                agent.clip_limits()

                # Re-calculates its fitness
                agent.fit = function(agent.position)

        # Re-sorts the whole space
        agents.sort(key=lambda x: x.fit)

        # Generates a uniform random number
        r1 = r.generate_uniform_random_number()

        # Calculates the number of worst agents (eq. 11)
        N = int(len(agents) * (r1 * (0.2 - 0.1) + 0.1))

        # Iterates through every bad agent
        for agent in agents[-N:]:
            # Generates another uniform random number
            r2 = r.generate_uniform_random_number()

            # Updates bad agent's position (eq. 12)
            agent.position = agent.lb + r2 * (agent.ub - agent.lb)
import opytimizer.math.general as g

# Creates a list for pairwising
individuals = [1, 2, 3, 4]

# Creates pairwise from list
for pair in g.n_wise(individuals, 2):
    # Outputting pairs
    print(f"Pair: {pair}")

# Performs a tournmanet selection over list
selected = g.tournament_selection(individuals, 2)

# Outputting selected individuals
print(f"Selected: {selected}")