Exemple #1
0
    def createInstance(self):
        bayes = orange.BayesLearner()
        if hasattr(self, "estimatorConstructor"):
            bayes.estimatorConstructor = self.estimatorConstructor
            if hasattr(self, "m"):
                if hasattr(bayes.estimatorConstructor, "m"):
                    raise AttributeError(
                        "invalid combination of attributes: 'estimatorConstructor' does not expect 'm'"
                    )
                else:
                    self.estimatorConstructor.m = self.m
        elif hasattr(self, "m"):
            bayes.estimatorConstructor = orange.ProbabilityEstimatorConstructor_m(
                m=self.m)

        if hasattr(self, "conditionalEstimatorConstructor"):
            bayes.conditionalEstimatorConstructor = self.conditionalEstimatorConstructor
        elif bayes.estimatorConstructor:
            bayes.conditionalEstimatorConstructor = orange.ConditionalProbabilityEstimatorConstructor_ByRows(
            )
            bayes.conditionalEstimatorConstructor.estimatorConstructor = bayes.estimatorConstructor

        if hasattr(self, "conditionalEstimatorConstructorContinuous"):
            bayes.conditionalEstimatorConstructorContinuous = self.conditionalEstimatorConstructorContinuous

        return bayes
Exemple #2
0
    def test_m(self):
        pec = orange.ProbabilityEstimatorConstructor_m(m=3)
        pe = pec([22, 5, 2], [1, 1, 1])
        self.assertEqual(list(pe()), [23 / 32, 6 / 32, 3 / 32])

        pe = pec([22, 5, 2], [6, 2, 2])
        self.assertEqual(list(pe()), [(22 + .6 * 3) / 32, (5 + .2 * 3) / 32,
                                      (2 + .2 * 3) / 32])

        self.assertRaises(ValueError, pec, [22, 5, 2])
Exemple #3
0
    def __init__(self, parent=None, signalManager = None, name='NaiveBayes'):
        OWWidget.__init__(self, parent, signalManager, name, wantMainArea = 0, resizingEnabled = 0)
        self.inputs = [("Data", ExampleTable, self.setData), ("Preprocess", PreprocessedLearner, self.setPreprocessor)]
        self.outputs = [("Learner", orange.Learner),("Naive Bayesian Classifier", orange.BayesClassifier)]

        self.m_estimator = orange.ProbabilityEstimatorConstructor_m()
        self.estMethods=[("Relative Frequency", orange.ProbabilityEstimatorConstructor_relative()),
                         ("Laplace", orange.ProbabilityEstimatorConstructor_Laplace()),
                         #("m-Estimate", self.m_estimator)
                         ]
        self.condEstMethods=[("<same as above>", None),
                             ("Relative Frequency", orange.ConditionalProbabilityEstimatorConstructor_ByRows(estimatorConstructor=orange.ProbabilityEstimatorConstructor_relative())),
                             ("Laplace", orange.ConditionalProbabilityEstimatorConstructor_ByRows(estimatorConstructor=orange.ProbabilityEstimatorConstructor_Laplace())),
                             ("m-Estimate", orange.ConditionalProbabilityEstimatorConstructor_ByRows(estimatorConstructor=self.m_estimator))]

        self.m_estimator.m = 2.0
        self.name = 'Naive Bayes'
        self.probEstimation = 0
        self.condProbEstimation = 0
        self.adjustThreshold = 0
        self.windowProportion = 0.5
        self.loessPoints = 100

        self.preprocessor = None
        self.data = None
        self.loadSettings()


        OWGUI.lineEdit(self.controlArea, self, 'name', box='Learner/Classifier Name', \
                 tooltip='Name to be used by other widgets to identify your learner/classifier.')
        OWGUI.separator(self.controlArea)

        glay = QGridLayout()
        box = OWGUI.widgetBox(self.controlArea, 'Probability estimation', orientation = glay)

        #glay.addWidget(OWGUI.separator(box, height=5), 0, 0)

        glay.addWidget(OWGUI.widgetLabel(box, "Prior"), 1, 0)

        glay.addWidget(OWGUI.comboBox(box, self, 'probEstimation', items=[e[0] for e in self.estMethods], tooltip='Method for estimating the prior probability.'),
                        1, 2)

        glay.addWidget(OWGUI.widgetLabel(box, "Conditional (for discrete)"), 2, 0)
        glay.addWidget(OWGUI.comboBox(box, self, 'condProbEstimation', items=[e[0] for e in self.condEstMethods], tooltip='Conditional probability estimation method used for discrete attributes.', callback=self.refreshControls),
                       2, 2)

        glay.addWidget(OWGUI.widgetLabel(box, "     " + "Parameter for m-estimate" + " "), 3, 0)
        mValid = QDoubleValidator(self.controlArea)
        mValid.setRange(0,10000,1)
        self.mwidget = OWGUI.lineEdit(box, self, 'm_estimator.m', valueType = float, validator = mValid)
        glay.addWidget(self.mwidget, 3, 2)

        glay.addWidget(OWGUI.separator(box), 4, 0)

        glay.addWidget(OWGUI.widgetLabel(box, 'Size of LOESS window'), 5, 0)
        kernelSizeValid = QDoubleValidator(self.controlArea)
        kernelSizeValid.setRange(0,1,3)
        glay.addWidget(OWGUI.lineEdit(box, self, 'windowProportion',
                       tooltip='Proportion of examples used for local learning in loess.\nUse 0 to learn from few local instances (3) and 1 to learn from all in the data set (this kind of learning is not local anymore).',
                       valueType = float, validator = kernelSizeValid),
                       5, 2)

        glay.addWidget(OWGUI.widgetLabel(box, 'LOESS sample points'), 6, 0)
        pointsValid = QIntValidator(20, 1000, self.controlArea)
        glay.addWidget(OWGUI.lineEdit(box, self, 'loessPoints',
                       tooltip='Number of points in computation of LOESS (20-1000).',
                       valueType = int, validator = pointsValid),
                       6, 2)

        OWGUI.separator(self.controlArea)

        OWGUI.checkBox(self.controlArea, self, "adjustThreshold", "Adjust threshold (for binary classes)", box = "Threshold")

        OWGUI.separator(self.controlArea)
#        box = OWGUI.widgetBox(self.controlArea, "Apply", orientation=1)
        applyButton = OWGUI.button(self.controlArea, self, "&Apply", callback=self.applyLearner, default=True)

        OWGUI.rubber(self.controlArea)
        self.refreshControls()
        self.applyLearner()
Exemple #4
0
# Description: Shows how to use probability estimators with measure of attribute quality
# Category:    attribute quality
# Classes:     MeasureAttribute, MeasureAttribute_info, ProbabilityEstimatorConstructor_m, ConditionalProbabilityEstimatorConstructor_ByRows
# Uses:        lenses
# Referenced:  MeasureAttribute.htm

import orange
data = orange.ExampleTable("lenses")

ms = (0, 2, 5, 10, 20)
measures = []
for m in ms:
    meas = orange.MeasureAttribute_info()
    meas.estimatorConstructor = orange.ProbabilityEstimatorConstructor_m(m=m)
    meas.conditionalEstimatorConstructor = orange.ConditionalProbabilityEstimatorConstructor_ByRows(
    )
    meas.conditionalEstimatorConstructor.estimatorConstructor = meas.estimatorConstructor
    measures.append(meas)

print "%15s\t%5i\t%5i\t%5i\t%5i\t%5i\t" % (("attr", ) + ms)
for attr in data.domain.attributes:
    print "%15s\t%5.3f\t%5.3f\t%5.3f\t%5.3f\t%5.3f" % (
        (attr.name, ) + tuple([meas(attr, data) for meas in measures]))