Exemple #1
0
    def test__povray( self ):

        c0, s0, c1, s1 = sage_var( 'c0,s0,c1,s1' )
        x, y, z = sage_var( 'x,y,z' )
        r = 1
        R = 2
        pmz_AB_lst = [1, ( c0 * r + R ) * c1, ( c0 * r + R ) * s1, r * s0]
        f_xyz = ( x ** 2 + y ** 2 + z ** 2 + R ** 2 - r ** 2 ) ** 2 - 4 * R ** 2 * ( x ** 2 + y ** 2 )

        v0_lst = [ ( sage_QQ( i ) / 180 ) * sage_pi for i in range( 0, 360, 150 )]
        v1_lst = [ ( sage_QQ( i ) / 180 ) * sage_pi for i in range( 0, 360, 300 )]

        # set PovInput as container
        # put very low quality for testing purposes
        pin = PovInput()
        pin.path = './' + get_time_str() + '_TEST_POVRAY_REMOVE_ME/'
        pin.fname = 'orb'
        pin.scale = 1
        pin.cam_dct['location'] = ( 0, -7, 0 )
        pin.cam_dct['lookat'] = ( 0, 0, 0 )
        pin.cam_dct['rotate'] = ( 45, 0, 0 )
        pin.light_radius = 5
        pin.axes_dct['show'] = True
        pin.axes_dct['len'] = 3
        pin.width = 2
        pin.height = 2
        pin.quality = 1
        pin.ani_delay = 1

        pin.impl = f_xyz

        pin.pmz_dct['A'] = ( pmz_AB_lst, 0 )
        pin.pmz_dct['B'] = ( pmz_AB_lst, 1 )

        pin.curve_dct['A'] = {'step0':v0_lst, 'step1': v1_lst, 'prec':1, 'width':0.08}
        pin.curve_dct['B'] = {'step0':v0_lst, 'step1': v1_lst, 'prec':1, 'width':0.08}

        pin.text_dct['A'] = [True, ( 0.5, 0.0, 0.0, 0.0 ), 'phong 0.2 phong_size 5' ]
        pin.text_dct['B'] = [True, ( 0.2, 0.3, 0.2, 0.0 ), 'phong 0.2 phong_size 5' ]
        pin.text_dct['SURF'] = [True, ( 0.2, 0.7, 0.3, 0.0 ), 'F_Glass10']

        # raytrace image/animation
        show_surf = True
        ani = False
        ft_lst = []

        lst = create_pov( pin, ['A', 'B'], show_surf, ani, ft_lst )
        lst = create_pov( pin, ['A'], False, True, [] )
Exemple #2
0
    def test__get_prj_S3(self):

        x0, x1, x2, x3, x4 = sage_var('x0,x1,x2,x3,x4')
        v = sage_vector([x1, x2, x3, x4, x0])
        out = get_prj_S3(v)
        print(out)
        assert out == [-x1 / (x0 - x4), -x2 / (x0 - x4), -x3 / (x0 - x4)]
Exemple #3
0
    def test__imp_pmz(self):

        A = sage__eval(
            '[(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 119/169, -120/169, 0), (0, 0, 120/169, 119/169, 0), (0, 0, 0, 0, 1)]'
        )
        A = sage_matrix(A)
        B = sage_identity_matrix(5)

        baseA, baseB, pmzAB = get_pmz(A, B, 0)

        dct = get_imp(A, B, 0, False, False)
        key_lst = [
            'Agreat', 'Bgreat', 'eqn_x', 'eqn_str', 'eqn_xyz', 'sng_lst'
        ]
        Agreat, Bgreat, eqn_x, eqn_str, eqn_xyz, sng_lst = [
            dct[key] for key in key_lst
        ]

        x, y, z = sage_var('x,y,z')
        seqn = eqn_xyz.subs({
            x: pmzAB[0],
            y: pmzAB[1],
            z: pmzAB[2]
        }).simplify_trig()

        print(seqn)
        assert seqn == 0
Exemple #4
0
def get_deg_dim( imp_lst ):
    '''
    Parameters
    ----------
    imp_lst : list<OrbRing.R>
        A list of homogenous polynomials in QQ[x0,...,x8]
        representing a variety S in projective 8-space P^8.
    
    Returns
    -------
    int[]
        A 2-tuple of integers consisting of
        the degree and the dimension of the variety S.
    '''
    # consider ideal in ring of the right dimension.
    R = sage_PolynomialRing( sage_QQ, sage_var( 'y0,y1,y2,y3,y4,y5,y6,y7,y8' ), order = 'degrevlex' )
    I = R.ideal( sage__eval( str( imp_lst ).replace( 'x', 'y' ), R.gens_dict() ) )

    # compute Hilbert polynomial: (deg/dim!)*t^dim + ...
    hpol = I.hilbert_polynomial()

    dim = hpol.degree()

    deg = hpol
    for i in range( dim ):
        deg = deg.diff()

    OrbTools.p( 'hpol =', hpol, ' (deg, dim)=', ( deg, dim ) )

    return deg, dim
Exemple #5
0
    def test__get_hp_P4(self):

        c0, s0, c1, s1 = sage_var('c0,s0,c1,s1')
        v = sage_vector([1, c0, s0, 0, 0])
        w = sage_vector([1, c1, s1, 0, 0])

        a12, a13, a23, a14, a24, a34 = [90, 0, 0, 0, 0, 0]
        M = get_rot_S3([a12, a13, a23, a14, a24, a34])
        out = get_hp_P4(v, M * w)
        print(out)
        assert str(out) == '[1, -c1*s0 - c0*s1, c0*c1 - s0*s1, 0, 0]'
Exemple #6
0
    def test__get_hp_S3(self):
        a01, a02, a03, a12, a13, a23 = 5 * [0] + [2]
        M = get_rot_S3(a01, a02, a03, a12, a13, a23)

        c0, s0, c1, s1 = sage_var('c0,s0,c1,s1')
        v = sage_vector([c0, s0, 0, 0, 1])
        w = sage_vector([c1, s1, 0, 0, 1])

        out = get_hp_S3(v, M * w)

        print(out)

        assert str(out) == '(c0*c1 - s0*s1, c1*s0 + c0*s1, 0, 0, 1)'
def get_pmz(A, B, prj):
    '''
    Computes parametrization of a stereographic projection of 
    the pointwise Hamiltonian product of circles in the sphere S^3 
    defined by transformations of the standard circle [1,cos(a),sin(a),0,0]
    by A and B respectively.  

        
    Parameters
    ----------
    A : sage_Matrix<sage_QQ>
        Represents a linear transformation S^3--->S^3
    B : sage_Matrix<sage_QQ>
        Represents a linear transformation S^3--->S^3
    prj : int 
        Choice for stereographic projection S^3--->P^3: 
        0: (x0:x1:x2:x3:x4) |--> (x0-x4:x1:x2:x3)
        1: (x0:x1:x2:x3:x4) |--> (x0-x1:x4:x2:x3)
        2: (x0:x1:x2:x3:x4) |--> (x0-x2:x1:x4:x3)
        3: (x0:x1:x2:x3:x4) |--> (x0-x3:x1:x2:x4)  
    
    Returns
    -------
    tuple
        Returns tuple (baseA, baseB, pmzAB) where
        * baseA: Parametrization of projection of A in cos(a) and sin(a).
        * baseB: Parametrization of projection of B in cos(b) and sin(b).
        * pmzAB: Parametrization of projection of A*B.                     
    '''
    dct = {}

    # Hamiltonian product of circles
    a, b = sage_var('a,b')
    u = list(A * sage_vector([1, sage_cos(a), sage_sin(a), 0, 0]))
    v = list(B * sage_vector([1, sage_cos(b), sage_sin(b), 0, 0]))
    p = get_hp_P4(u, v)

    # stereographic projection
    if prj == 0: j, i_lst = 4, [1, 2, 3]
    if prj == 1: j, i_lst = 1, [4, 2, 3]
    if prj == 2: j, i_lst = 2, [1, 4, 3]
    if prj == 3: j, i_lst = 3, [1, 2, 4]
    p = [p[i] / (p[0] - p[j]) for i in i_lst]

    # put in dictionary
    pmzAB = [elt.full_simplify() for elt in p]
    baseA = [u[i] / (u[0] - u[j]) for i in i_lst]
    baseB = [v[i] / (v[0] - v[j]) for i in i_lst]

    return baseA, baseB, pmzAB
def clifford(sinp):
    '''
    Parameters
    ----------
    sinp : SphereInput    
    
    Returns
    -------
    tuple
        A tuple (plt,out) where 
        * plt : sage_Graphics object with plots of surface defined 
                by "sinp".
        * out : Information string.
        
    Notes
    -----
    See documentation at top of this file for possible usage of 
    this method.
    '''
    #
    # compute matrices A and B
    #
    T = get_trn_S3(sinp.trna)
    R = get_rot_S3(sinp.rota)
    S = get_scale_S3(sinp.sa)
    A = S * R * T

    T = get_trn_S3(sinp.trnb)
    R = get_rot_S3(sinp.rotb)
    S = get_scale_S3(sinp.sb)
    B = S * R * T

    #
    # Compute implicit and parametric form of a stereographic
    # projection of the Hamiltonian product of A and B.
    #
    baseA, baseB, pmzAB = get_pmz(A, B, sinp.prj)
    if sinp.imp:
        dct = get_imp(A, B, sinp.prj, sinp.sng, sinp.snp)
        key_lst = [
            'Agreat', 'Bgreat', 'eqn_x', 'eqn_str', 'eqn_xyz', 'sng_lst'
        ]
        Agreat, Bgreat, eqn_x, eqn_str, eqn_xyz, sng_lst = [
            dct[key] for key in key_lst
        ]

    #
    # create graphics object
    #
    plt = sage_Graphics()
    a, b = sage_var('a,b')

    if sinp.pmz:
        plt += sage_parametric_plot3d(pmzAB, (a, 0, 2 * sage_pi),
                                      (b, 0, 2 * sage_pi),
                                      color=sinp.col_pmz,
                                      aspect_ratio=1,
                                      plot_points=sinp.ppt,
                                      opacity=sinp.opa)

    if sinp.bas:
        plt += sage_parametric_plot3d(baseA, (a, 0, 2 * sage_pi),
                                      color=sinp.col_famA,
                                      thickness=10,
                                      aspect_ratio=1)
        plt += sage_parametric_plot3d(baseB, (b, 0, 2 * sage_pi),
                                      color=sinp.col_famB,
                                      thickness=10,
                                      aspect_ratio=1)

    if sinp.mrk:
        plt += sage_point3d((0, 0, 0), size=30, color=sage_Color("magenta"))
        plt += sage_point3d((1, 0, 0), size=30, color=sage_Color("green"))

    if sinp.fam:
        if sinp.famA:
            for b1 in range(0, 360, sinp.stp):
                ps = [
                    pmzAB[i].subs({b: b1 * sage_pi / 180}) for i in [0, 1, 2]
                ]
                plt += sage_parametric_plot3d(ps, (a, 0, 2 * sage_pi),
                                              color=sage_Color("red"),
                                              thickness=sinp.famt,
                                              aspect_ratio=1,
                                              plot_points=sinp.ppt)
        if sinp.famB:
            for a1 in range(0, 360, sinp.stp):
                ps = [
                    pmzAB[i].subs({a: a1 * sage_pi / 180}) for i in [0, 1, 2]
                ]
                plt += sage_parametric_plot3d(ps, (b, 0, 2 * sage_pi),
                                              color=sage_Color("blue"),
                                              thickness=sinp.famt,
                                              aspect_ratio=1,
                                              plot_points=sinp.ppt)

    if sinp.imp:
        rng = sinp.rng
        x, y, z = sage_var('x,y,z')
        plt += sage_implicit_plot3d(eqn_xyz, (x, -rng, rng), (y, -rng, rng),
                                    (z, -rng, rng),
                                    color=sinp.col_imp,
                                    plot_points=sinp.ppt,
                                    opacity=sinp.opa)

    #
    # create output string
    #
    out = ''
    out += str(sinp)
    out += '\n'
    if sinp.imp:
        out += '\neqn_str = ' + eqn_str
        out += '\nAgreat  = ' + str(Agreat)
        out += '\nBgreat  = ' + str(Bgreat)
        out += '\nA       = ' + str(list(A))
        out += '\nB       = ' + str(list(B))
        out += '\npmzAB   = ' + str(pmzAB)
        if sinp.sng:
            out += '\nsng_lst (long)  ='
            out += '\n-----'
            for sng in sng_lst:
                out += '\n' + str(sng)
            out += '\n-----'
            out += '\nsng_lst (short) ='
            out += '\n-----'
            for sng in sng_lst:
                out += '\n' + str(sng[1])
            out += '\n-----'

    return plt, out
Exemple #9
0
def veronese():
    '''
    Construct povray image of a 3-web of conics on the Veronese surface.
    '''

    #############################################
    # Construct projection of Veronese surface. #
    #############################################

    c0, s0, c1, s1, t0 = sage_var('c0,s0,c1,s1,t0')
    x, y = sage_var('x,y')

    pmz_A_lst = [1, c0 * s0 * s1, c0 * s0 * c1, c0 * c0 * c1 * s1]

    P1 = c0 / (s0 - 1)
    P2 = c1 / (s1 - 1)
    P3 = (s0 / c0) * (c1 / (s1 - 1))

    dct_CD = {x: P1, y: P2}
    den_CD = (s0 - 1)**2 * (s1 - 1)**2

    dct_ED = {x: P3, y: P2}
    den_ED = c0**2 * (s1 - 1)**2

    pmz_lst = [x**2 + y**2 + 1, -x, -x * y, y]
    pmz_B_lst = [(pmz.subs(dct_CD) * den_CD).expand() for pmz in pmz_lst]
    pmz_C_lst = [(pmz.subs(dct_ED) * den_ED).expand() for pmz in pmz_lst]

    # parametrization of circles
    #
    pmz_C1_lst = [pmz.subs({x: t0, y: -t0 - 1}) for pmz in pmz_lst]
    pmz_C2_lst = [pmz.subs({x: t0, y: -t0 + 1}) for pmz in pmz_lst]
    pmz_C3_lst = [pmz.subs({x: t0, y: t0 + 1}) for pmz in pmz_lst]
    pmz_C4_lst = [pmz.subs({x: t0, y: t0 - 1}) for pmz in pmz_lst]

    # output
    #
    lst_lst = [('A', pmz_A_lst), ('B', pmz_B_lst), ('C', pmz_C_lst)]
    lst_lst += [
        ('C1', pmz_C1_lst),
        ('C2', pmz_C2_lst),
        ('C3', pmz_C3_lst),
        ('C4', pmz_C4_lst),
    ]
    for A, pmz_lst in lst_lst:
        OrbTools.p('pmz_' + A + '_lst =', pmz_lst)
        for pmz in pmz_lst:
            OrbTools.p('\t\t', sage_factor(pmz))

    #############################
    # PovInput Veronese surface #
    #############################

    pin = PovInput()

    pin.path = './' + get_time_str() + '_veronese/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = (0, -1.2, 0)
    pin.cam_dct['lookat'] = (0, 0, 0)
    pin.cam_dct['rotate'] = (35, 0, 45)
    pin.shadow = True
    pin.light_lst = [(0, 0, -5), (0, -5, 0), (-5, 0, 0), (0, 0, 5), (0, 5, 0),
                     (5, 0, 0)]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 0.5
    pin.height = 400
    pin.width = 800
    pin.quality = 11
    pin.ani_delay = 10

    pin.impl = None

    pin.pmz_dct['A'] = (pmz_A_lst, 0)
    pin.pmz_dct['B'] = (pmz_B_lst, 1)
    pin.pmz_dct['C'] = (pmz_C_lst, 1)

    pin.pmz_dct['FA'] = (pmz_A_lst, 0)
    pin.pmz_dct['FB'] = (pmz_B_lst, 1)
    pin.pmz_dct['FC'] = (pmz_C_lst, 1)

    pin.pmz_dct['FA2'] = (pmz_A_lst, 0)
    pin.pmz_dct['FB2'] = (pmz_B_lst, 1)
    pin.pmz_dct['FC2'] = (pmz_C_lst, 1)

    pin.pmz_dct['C1'] = (pmz_C1_lst, 0)
    pin.pmz_dct['C2'] = (pmz_C2_lst, 0)
    pin.pmz_dct['C3'] = (pmz_C3_lst, 0)
    pin.pmz_dct['C4'] = (pmz_C4_lst, 0)

    v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 5)]
    v1_A_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 9)]
    v1_B_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 18)]
    v1_C_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 9)]

    v1_lst_F = [(sage_QQ(i) / (3 * 180)) * sage_pi
                for i in range(0, 3 * 360, 1)]
    v1_lst_F2 = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 2)]

    v0_lst_CC = [sage_QQ(i) / 10 for i in range(-100, 100, 1)]

    prec = 50

    pin.curve_dct['A'] = {
        'step0': v0_lst,
        'step1': v1_A_lst,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['B'] = {
        'step0': v0_lst,
        'step1': v1_B_lst,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['C'] = {
        'step0': v0_lst,
        'step1': v1_C_lst,
        'prec': prec,
        'width': 0.01
    }

    pin.curve_dct['FA'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.001
    }
    pin.curve_dct['FB'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.001
    }
    pin.curve_dct['FC'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.001
    }

    pin.curve_dct['FA2'] = {
        'step0': v0_lst,
        'step1': v1_lst_F2,
        'prec': prec,
        'width': 0.001
    }
    pin.curve_dct['FB2'] = {
        'step0': v0_lst,
        'step1': v1_lst_F2,
        'prec': prec,
        'width': 0.001
    }
    pin.curve_dct['FC2'] = {
        'step0': v0_lst,
        'step1': v1_lst_F2,
        'prec': prec,
        'width': 0.001
    }

    pin.curve_dct['C1'] = {
        'step0': v0_lst_CC,
        'step1': [0],
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['C2'] = {
        'step0': v0_lst_CC,
        'step1': [0],
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['C3'] = {
        'step0': v0_lst_CC,
        'step1': [0],
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['C4'] = {
        'step0': v0_lst_CC,
        'step1': [0],
        'prec': prec,
        'width': 0.01
    }

    col_A = (0.6, 0.4, 0.1, 0.0)
    col_B = (0.1, 0.15, 0.0, 0.0)
    col_C = (0.2, 0.3, 0.2, 0.0)
    colFF = (0.1, 0.1, 0.1, 0.0)
    colCC = (0.6, 0.0, 0.0, 0.0)

    pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5']

    pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5']

    pin.text_dct['FA2'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FB2'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FC2'] = [True, colFF, 'phong 0.2 phong_size 5']

    pin.text_dct['C1'] = [True, colCC, 'phong 0.2 phong_size 5']
    pin.text_dct['C2'] = [True, colCC, 'phong 0.2 phong_size 5']
    pin.text_dct['C3'] = [True, colCC, 'phong 0.2 phong_size 5']
    pin.text_dct['C4'] = [True, colCC, 'phong 0.2 phong_size 5']

    ############################
    # raytrace image/animation #
    ############################

    # four circles on projection Veronese surface
    pin.cam_dct['location'] = (0, -1.5, 0)
    pin.cam_dct['rotate'] = (60, 10, 45)
    create_pov(pin, ['FA2', 'FB2', 'FC2'])
    create_pov(pin, ['C1', 'C2', 'C3', 'C4'] + ['FA2', 'FB2', 'FC2'])

    # hexagonal web on Veronese surface
    pin.cam_dct['location'] = (0, -1.2, 0)
    pin.cam_dct['rotate'] = (35, 0, 45)
    create_pov(pin, ['A', 'B', 'C'])
    create_pov(pin, ['A', 'B', 'C', 'FA', 'FB', 'FC'])
    create_pov(pin, ['FA2', 'FB2', 'FC2'])
def CH1_cyclide():
    '''
    Creates povray image of a CH1 cyclide, which is
    an inversion of a Circular Hyperboloid of 1 sheet.    
    '''

    # Construct a trigonometric parametrization by rotating a circle.
    r, R = 1, 1
    c0, s0, c1, s1 = sage_var('c0,s0,c1,s1')
    x, y, v, w, a0 = sage_var('x,y,v,w,a0')
    q2 = sage_QQ(1) / 2
    MX = sage_matrix([(1, 0, 0), (0, c1, s1), (0, -s1, c1)])
    MXc = MX.subs({c1: a0, s1: a0})  # a0=1/sqrt(2)=cos(pi/4)=sin(pi/4)
    MZ = sage_matrix([(c1, s1, 0), (-s1, c1, 0), (0, 0, 1)])
    V = sage_vector([r * c0, 0, r * s0])
    V = MXc * V
    V[0] = V[0] + R
    pmz_AB_lst = list(MZ * V)
    OrbTools.p('V =', V)
    OrbTools.p('pmz_AB_lst =', pmz_AB_lst)
    for pmz in pmz_AB_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # Convert the trigonometric parametrization to a rational parametrization
    # We convert via the following formulas,
    #
    #     cos(s) = (y^2-x^2) / (y^2+x^2)
    #     sin(s) = 2*x*y / (y^2+x^2)
    #     y=1; x = arctan( s/2 )
    #
    C0 = (y**2 - x**2) / (y**2 + x**2)
    S0 = 2 * x * y / (y**2 + x**2)
    C1 = (w**2 - v**2) / (w**2 + v**2)
    S1 = 2 * v * w / (w**2 + v**2)
    den = (y**2 + x**2) * (w**2 + v**2)
    dct = {c0: C0, s0: S0, c1: C1, s1: S1}
    pmz_lst = [den] + [(elt.subs(dct) * den).simplify_full()
                       for elt in list(MZ * V)]
    OrbTools.p('pmz_lst =', pmz_lst)
    for pmz in pmz_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # do a basepoint analysis on the rational parametrization
    # The True argument is for resetting the number field to QQ!
    ring = PolyRing('x,y,v,w', True).ext_num_field('t^2-1/2')
    ls = LinearSeries([str(pmz) for pmz in pmz_lst], ring)
    OrbTools.p(ls.get_bp_tree())

    # construct linear series for families of conics
    ring = PolyRing(
        'x,y,v,w')  # construct polynomial ring over new ground field
    OrbTools.p(ring)
    x, y, v, w = ring.gens()
    a0, a1 = ring.root_gens()

    p1 = ['xv', (0, 2 * a0 * a1)]
    p2 = ['xv', (0, -2 * a0 * a1)]
    p3 = ['xv', (a1, 2 * a0 * a1)]
    p4 = ['xv', (-a1, -2 * a0 * a1)]

    bpt_1234 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_1234.add(p1[0], p1[1], 1)
    bpt_1234.add(p2[0], p2[1], 1)
    bpt_1234.add(p3[0], p3[1], 1)
    bpt_1234.add(p4[0], p4[1], 1)

    bpt_12 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_12.add(p1[0], p1[1], 1)
    bpt_12.add(p2[0], p2[1], 1)

    bpt_34 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_34.add(p3[0], p3[1], 1)
    bpt_34.add(p4[0], p4[1], 1)

    ls_22 = LinearSeries.get([2, 2], bpt_1234)  # |2(l1+l2)-e1-e2-e3-e4|
    ls_21 = LinearSeries.get([2, 1], bpt_1234)
    ls_12 = LinearSeries.get([1, 2], bpt_1234)
    ls_11a = LinearSeries.get([1, 1], bpt_12)
    ls_11b = LinearSeries.get([1, 1], bpt_34)

    OrbTools.p('linear series 22 =\n', ls_22)
    OrbTools.p('linear series 21 =\n', ls_21)
    OrbTools.p('linear series 12 =\n', ls_12)
    OrbTools.p('linear series 11a =\n', ls_11a)
    OrbTools.p('linear series 11b =\n', ls_11b)

    # compute reparametrization from the linear series of families
    ring = PolyRing(
        'x,y,v,w,c0,s0,c1,s1')  # construct polynomial ring with new generators
    OrbTools.p(ring)
    x, y, v, w, c0, s0, c1, s1 = ring.gens()
    a0, a1 = ring.root_gens()
    pmz_AB_lst = [1] + ring.coerce(pmz_AB_lst)
    pmz_lst = ring.coerce(pmz_lst)

    X = 1 - s0
    Y = c0
    V = 1 - s1
    W = c1
    CB_dct = {
        x: X,
        y: Y,
        v: W * X - 2 * a0 * V * Y,
        w: V * X + 2 * a0 * W * Y
    }
    pmz_CB_lst = [pmz.subs(CB_dct) for pmz in pmz_lst]  # CB  11b

    # output
    OrbTools.p('pmz_AB_lst =\n', pmz_AB_lst)
    OrbTools.p('pmz_CB_lst =\n', pmz_CB_lst)

    # approximate by map defined over rational numbers
    ci_idx = 0  # index defining the complex embedding
    OrbTools.p('complex embeddings =')
    for i in range(len(a0.complex_embeddings())):
        a0q = OrbRing.approx_QQ_coef(a0, i)
        OrbTools.p('\t\t' + str(i) + ' =', a0q, sage_n(a0q))
    pmz_AB_lst = OrbRing.approx_QQ_pol_lst(pmz_AB_lst, ci_idx)
    pmz_CB_lst = OrbRing.approx_QQ_pol_lst(pmz_CB_lst, ci_idx)

    # mathematica input
    ms = ''
    for pmz, AB in [(pmz_lst, 'ZZ'), (pmz_AB_lst, 'AB'), (pmz_CB_lst, 'CB')]:
        s = 'pmz' + AB + '=' + str(pmz) + ';'
        s = s.replace('[', '{').replace(']', '}')
        ms += '\n' + s
    OrbTools.p('Mathematica input =', ms)

    # PovInput ring cyclide
    #
    pin = PovInput()

    pin.path = './' + get_time_str() + '_CH1_cyclide/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = (0, -5, 0)
    pin.cam_dct['lookat'] = (0, 0, 0)
    pin.cam_dct['rotate'] = (20, 0, 0)
    pin.shadow = True
    pin.light_lst = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0),
                     (0, 0, -1), (10, 0, 0), (0, 10, 0), (0, 0, 10),
                     (-10, 0, 0), (0, -10, 0), (0, 0, -10)]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.height = 400
    pin.width = 800
    pin.quality = 11
    pin.ani_delay = 10

    pin.impl = None

    pin.pmz_dct['A'] = (pmz_AB_lst, 0)
    pin.pmz_dct['B'] = (pmz_AB_lst, 1)
    pin.pmz_dct['C'] = (pmz_CB_lst, 0)

    pin.pmz_dct['FA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['FB'] = (pmz_AB_lst, 1)
    pin.pmz_dct['FC'] = (pmz_CB_lst, 0)

    v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]

    v1_lst_A = [(sage_QQ(i) / 180) * sage_pi for i in range(180, 360, 10)]
    v1_lst_B = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 10)]
    v1_lst_C = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 10)]

    v1_lst_FA = [(sage_QQ(i) / 180) * sage_pi for i in range(180, 360, 2)]
    v1_lst_FB = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 2)]
    v1_lst_FC = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 2)]

    prec = 50

    pin.curve_dct['A'] = {
        'step0': v0_lst,
        'step1': v1_lst_A,
        'prec': prec,
        'width': 0.03
    }
    pin.curve_dct['B'] = {
        'step0': v0_lst,
        'step1': v1_lst_B,
        'prec': prec,
        'width': 0.03
    }
    pin.curve_dct['C'] = {
        'step0': v0_lst,
        'step1': v1_lst_C,
        'prec': prec,
        'width': 0.03
    }

    pin.curve_dct['FA'] = {
        'step0': v0_lst,
        'step1': v1_lst_FA,
        'prec': prec,
        'width': 0.02
    }
    pin.curve_dct['FB'] = {
        'step0': v0_lst,
        'step1': v1_lst_FB,
        'prec': prec,
        'width': 0.02
    }
    pin.curve_dct['FC'] = {
        'step0': v0_lst,
        'step1': v1_lst_FC,
        'prec': prec,
        'width': 0.02
    }

    col_A = (0.6, 0.4, 0.1, 0.0)
    col_B = (0.1, 0.15, 0.0, 0.0)
    col_C = (0.2, 0.3, 0.2, 0.0)
    colFF = (0.1, 0.1, 0.1, 0.0)

    pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5']
    pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5']

    # raytrace image/animation
    create_pov(pin, ['A', 'B', 'C'])
    create_pov(pin, ['A', 'B', 'C', 'FA', 'FB', 'FC'])
    create_pov(pin, ['A', 'B', 'FA', 'FB'])
    create_pov(pin, ['B', 'C', 'FA', 'FB'])
Exemple #11
0
def get_orb_bp_tree( pmz_lst ):
    '''
    Parameters
    ----------
    pmz_lst : list
        A list of 9 elements p0,...,p8 in QQ[c0,s0,c1,s1]
        such that -p0^2+p1^2+...+p8^2==0.
        Some of the polynomials can be equal to zero. 
        The list should represent a parametrization:
            S^1xS^1--->S^7.
        Here (c0,s0) is a points on S^1 such that
        thus c0^2+s0^2-1==0. Similarly for (c1,s1).
                                                                                 
    Returns
    -------
    linear_series.BasePointTree
        Base points of a parametrizing map given by the composition:
            P^1xP^1---->S^1xS^1--->S^7--->S^n          
        with 2<=n<=7. The composition of the latter two maps 
        are defined by omitting the zero polynomials from "pmz_lst". 
    '''

    # setup dictionary for reparametrization'
    #
    c0, s0, c1, s1 = OrbRing.coerce( 'c0,s0,c1,s1' )
    dct1 = {}
    dct1[c0] = '2*t0*t1/(t0^2+t1^2)'
    dct1[s0] = '(-t0^2+t1^2)/(t0^2+t1^2)'
    dct1[c1] = '2*v0*v1/(v0^2+v1^2)'
    dct1[s1] = '(-v0^2+v1^2)/(v0^2+v1^2)'
    for key in dct1: dct1[key] = OrbRing.coerce( dct1[key] )

    # apply reparametrization and multiply out denominators
    # where we only consider non-zero entries
    #
    ps_lst = [ pmz for pmz in pmz_lst if pmz != 0 ]
    gcm1 = OrbRing.coerce( '(t0^2+t1^2)*(v0^2+v1^2)' )
    ps_lst = [ OrbRing.coerce( ps.subs( dct1 ) * gcm1 ) for ps in ps_lst ]

    # ensure that polynomials are co-prime
    #
    gcd1 = sage_gcd( ps_lst )
    ps_lst = [ OrbRing.coerce( ps / gcd1 ) for ps in ps_lst ]
    OrbTools.p( 'gcd =', gcd1 )
    OrbTools.p( 'ps_lst =', ps_lst )

    # Verify whether "ps_lst" represents a map P^1xP^1--->S^n
    # where "n==len(ps_lst)".
    #
    sum1 = sum( [-ps_lst[0] ** 2] + [ ps ** 2 for ps in ps_lst[1:] ] )
    OrbTools.p( 'sum =', sum1 )
    if sum1 != 0:
        warnings.warn( 'Warning: Not parametrization of surface in S^7: ' + str( sum1 ), )

    # set coordinates x,y,v,w
    #
    t0, t1, v0, v1 = OrbRing.coerce( 't0,t1,v0,v1' )
    dct2 = {}
    dct2[t0] = sage_var( 'x' )
    dct2[t1] = sage_var( 'y' )
    dct2[v0] = sage_var( 'v' )
    dct2[v1] = sage_var( 'w' )
    xyvw_lst = [ str( ps.subs( dct2 ) ) for ps in ps_lst ]

    #
    # Compute base point tree using "linear_series" package
    #
    ls = LinearSeries( xyvw_lst, PolyRing( 'x,y,v,w', True ) )
    bp_tree = ls.get_bp_tree()
    OrbTools.p( ls )
    OrbTools.p( bp_tree )

    return bp_tree
Exemple #12
0
def perseus_cyclide():
    '''
    Creates povray image of the Perseus cyclide.
    '''

    # We first construct a trigonometric parametrization
    # by rotating a circle.
    #     cos(pi/3) = 1/2
    #     sin(pi/3) = sqrt(3)/2
    #
    r, R = 1, 2
    c0, s0, c1, s1 = sage_var('c0,s0,c1,s1')
    x, y, v, w, a0 = sage_var('x,y,v,w,a0')
    q2 = sage_QQ(1) / 2
    MZ = sage_matrix([(c1, s1, 0), (-s1, c1, 0), (0, 0, 1)])
    MZc = MZ.subs({c1: q2, s1: q2 * a0})
    V = sage_vector([r * c0, 0, r * s0])
    V = MZc * V
    V[0] = V[0] + R
    pmz_AB_lst = list(MZ * V)

    OrbTools.p('V =', V)
    OrbTools.p('pmz_AB_lst =', pmz_AB_lst)
    for pmz in pmz_AB_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # We convert the trigonometric parametrization to a
    # rational parametrization, via the following formulas:
    #
    #     cos(s) = (y^2-x^2) / (y^2+x^2)
    #     sin(s) = 2*x*y / (y^2+x^2)
    #     y=1; x = arctan( s/2 )
    #
    C0 = (y**2 - x**2) / (y**2 + x**2)
    S0 = 2 * x * y / (y**2 + x**2)
    C1 = (w**2 - v**2) / (w**2 + v**2)
    S1 = 2 * v * w / (w**2 + v**2)
    den = (y**2 + x**2) * (w**2 + v**2)
    dct = {c0: C0, s0: S0, c1: C1, s1: S1}
    pmz_lst = [den] + [(elt.subs(dct) * den).simplify_full()
                       for elt in list(MZ * V)]
    OrbTools.p('pmz_lst =', pmz_lst)
    for pmz in pmz_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # do a basepoint analysis on the rational parametrization
    #
    ring = PolyRing('x,y,v,w', True).ext_num_field('t^2-3')
    ls = LinearSeries([str(pmz) for pmz in pmz_lst], ring)
    OrbTools.p(ls.get_bp_tree())

    # construct linear series for families of conics
    #
    ring = PolyRing(
        'x,y,v,w')  # construct polynomial ring over new ground field
    OrbTools.p(ring)
    x, y, v, w = ring.gens()
    a0, a1, a2, a3 = ring.root_gens()

    p1 = ['xv', (-a3, a1)]
    p2 = ['xv', (-a2, -a1)]
    p3 = ['xv', (a3, a1)]
    p4 = ['xv', (a2, -a1)]

    bpt_1234 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_1234.add(p1[0], p1[1], 1)
    bpt_1234.add(p2[0], p2[1], 1)
    bpt_1234.add(p3[0], p3[1], 1)
    bpt_1234.add(p4[0], p4[1], 1)

    bpt_12 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_12.add(p1[0], p1[1], 1)
    bpt_12.add(p2[0], p2[1], 1)

    bpt_34 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_34.add(p3[0], p3[1], 1)
    bpt_34.add(p4[0], p4[1], 1)

    ls_22 = LinearSeries.get([2, 2], bpt_1234)
    ls_21 = LinearSeries.get([2, 1], bpt_1234)
    ls_12 = LinearSeries.get([1, 2], bpt_1234)
    ls_11a = LinearSeries.get([1, 1], bpt_12)
    ls_11b = LinearSeries.get([1, 1], bpt_34)

    OrbTools.p('linear series 22 =\n', ls_22)
    OrbTools.p('linear series 21 =\n', ls_21)
    OrbTools.p('linear series 12 =\n', ls_12)
    OrbTools.p('linear series 11a =\n', ls_11a)
    OrbTools.p('linear series 11b =\n', ls_11b)

    # compute reparametrization from the linear series of families
    ring = PolyRing('x,y,v,w,c0,s0,c1,s1')
    OrbTools.p(ring)
    x, y, v, w, c0, s0, c1, s1 = ring.gens()
    a0, a1, a2, a3 = ring.root_gens()
    pmz_AB_lst = [1] + ring.coerce(pmz_AB_lst)
    pmz_lst = ring.coerce(pmz_lst)

    q2 = sage_QQ(1) / 2
    a = 2 * a0 / 3
    b = (-a0 * a1 / 3 - q2) * a3
    c = (a0 * a1 / 3 - q2) * a2
    d = (a1 / 2 - a0 / 3) * a3
    e = (-a1 / 2 - a0 / 3) * a2
    bc = b + c
    de = d + e

    X = 1 - s0
    Y = c0
    V = 1 - s1
    W = c1
    CB_dct = {
        x: X,
        y: Y,
        v: W * X + bc * W * Y - de * V * Y,
        w: V * X + bc * V * Y + de * W * Y
    }
    DB_dct = {
        x: X,
        y: Y,
        v: W * X - bc * W * Y + de * V * Y,
        w: V * X - bc * V * Y - de * W * Y
    }
    EB_dct = {
        x: X,
        y: Y,
        v: W * X**2 + W * Y**2 - a * V * Y**2,
        w: V * X**2 + V * Y**2 + a * W * Y**2
    }
    pmz_CB_lst = [pmz.subs(CB_dct) for pmz in pmz_lst]  # CB  11a
    pmz_DB_lst = [pmz.subs(DB_dct) for pmz in pmz_lst]  # CB  11b
    pmz_EB_lst = [pmz.subs(EB_dct) for pmz in pmz_lst]  # CB  21

    # output
    OrbTools.p('pmz_AB_lst =\n', pmz_AB_lst)
    OrbTools.p('pmz_CB_lst =\n', pmz_CB_lst)
    OrbTools.p('pmz_DB_lst =\n', pmz_DB_lst)
    OrbTools.p('pmz_EB_lst =\n', pmz_EB_lst)

    # approximate by map defined over rational numbers
    ci_idx = 5  # index defining the complex embedding
    pmz_AB_lst = OrbRing.approx_QQ_pol_lst(pmz_AB_lst, ci_idx)
    pmz_CB_lst = OrbRing.approx_QQ_pol_lst(pmz_CB_lst, ci_idx)
    pmz_DB_lst = OrbRing.approx_QQ_pol_lst(pmz_DB_lst, ci_idx)
    pmz_EB_lst = OrbRing.approx_QQ_pol_lst(pmz_EB_lst, ci_idx)

    # mathematica input
    ms = ''
    for pmz, AB in [(pmz_lst, 'ZZ'), (pmz_AB_lst, 'AB'), (pmz_CB_lst, 'CB'),
                    (pmz_DB_lst, 'DB'), (pmz_EB_lst, 'EB')]:
        s = 'pmz' + AB + '=' + str(pmz) + ';'
        s = s.replace('[', '{').replace(']', '}')
        ms += '\n' + s
    OrbTools.p('Mathematica input =', ms)

    # PovInput ring cyclide
    #
    pin = PovInput()

    pin.path = './' + get_time_str() + '_perseus_cyclide/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = (0, 7, 0)
    pin.cam_dct['lookat'] = (0, 0, 0)
    pin.cam_dct['rotate'] = (45, 0, 0)
    pin.shadow = True
    pin.light_lst = [(0, 0, -10), (0, -10, 0), (-10, 0, 0), (0, 0, 10),
                     (0, 10, 0), (10, 0, 0)]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.height = 400
    pin.width = 800
    pin.quality = 11
    pin.ani_delay = 10

    pin.impl = None

    pin.pmz_dct['A'] = (pmz_AB_lst, 0)
    pin.pmz_dct['B'] = (pmz_AB_lst, 1)
    pin.pmz_dct['C'] = (pmz_CB_lst, 0)
    pin.pmz_dct['D'] = (pmz_DB_lst, 0)
    pin.pmz_dct['E'] = (pmz_EB_lst, 0)

    pin.pmz_dct['FA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['FB'] = (pmz_AB_lst, 1)
    pin.pmz_dct['FC'] = (pmz_CB_lst, 0)
    pin.pmz_dct['FD'] = (pmz_DB_lst, 0)
    pin.pmz_dct['FE'] = (pmz_EB_lst, 0)

    v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]
    v1_lst_A = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]  # 5
    v1_lst_B = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 15)]
    v1_lst_C = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 36)]
    v1_lst_D = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 36)]
    v1_lst_E = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]  # 5

    v1_lst_F = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 1)]

    prec = 50

    pin.curve_dct['A'] = {
        'step0': v0_lst,
        'step1': v1_lst_A,
        'prec': prec,
        'width': 0.04
    }
    pin.curve_dct['B'] = {
        'step0': v0_lst,
        'step1': v1_lst_B,
        'prec': prec,
        'width': 0.04
    }
    pin.curve_dct['C'] = {
        'step0': v0_lst,
        'step1': v1_lst_C,
        'prec': prec,
        'width': 0.05
    }
    pin.curve_dct['D'] = {
        'step0': v0_lst,
        'step1': v1_lst_D,
        'prec': prec,
        'width': 0.05
    }
    pin.curve_dct['E'] = {
        'step0': v0_lst,
        'step1': v1_lst_E,
        'prec': prec,
        'width': 0.04
    }

    pin.curve_dct['FA'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['FB'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['FC'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['FD'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['FE'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }

    col_A = (0.6, 0.0, 0.0, 0.0)  # red
    col_B = (0.8, 0.6, 0.2, 0.0)  # beige
    col_C = (0.6, 0.0, 0.0, 0.0
             )  # red   *** rgbt2pov( ( 74, 33, 0, 0 ) )     # brown
    col_D = (0.2, 0.6, 0.0, 0.0
             )  # green *** rgbt2pov( ( 28, 125, 154, 0 ) )  # blue
    col_E = (0.2, 0.6, 0.0, 0.0)  # green
    colFF = (0.1, 0.1, 0.1, 0.0)

    pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5']
    pin.text_dct['D'] = [True, col_D, 'phong 0.2 phong_size 5']
    pin.text_dct['E'] = [True, col_E, 'phong 0.2 phong_size 5']

    pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FD'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FE'] = [True, colFF, 'phong 0.2 phong_size 5']

    # raytrace image/animation
    create_pov(pin, ['C', 'D', 'FC', 'FD'])
    create_pov(pin, ['A', 'B', 'FC', 'FD'])
    create_pov(pin, ['E', 'B', 'FC', 'FD'])
def blum_cyclide():
    '''
    Construct a povray image of 6 families of circles on a smooth Darboux cyclide.
    This surface is also known as the Blum cyclide.
    '''

    # construct dct
    a0 = PolyRing( 'x,y,v,w', True ).ext_num_field( 't^2 + 1' ).root_gens()[0]  # i

    bpt_1234 = BasePointTree( ['xv', 'xw', 'yv', 'yw'] )
    bpt_1234.add( 'xv', ( -1 * a0, 1 * a0 ), 1 )  # e1
    bpt_1234.add( 'xv', ( 1 * a0, -1 * a0 ), 1 )  # e2
    bpt_1234.add( 'xw', ( -2 * a0, 2 * a0 ), 1 )  # e3
    bpt_1234.add( 'xw', ( 2 * a0, -2 * a0 ), 1 )  # e4

    bpt_12 = BasePointTree( ['xv', 'xw', 'yv', 'yw'] )
    bpt_12.add( 'xv', ( -1 * a0, 1 * a0 ), 1 )  # e1
    bpt_12.add( 'xv', ( 1 * a0, -1 * a0 ), 1 )  # e2

    bpt_34 = BasePointTree( ['xv', 'xw', 'yv', 'yw'] )
    bpt_34.add( 'xw', ( -2 * a0, 2 * a0 ), 1 )  # e3
    bpt_34.add( 'xw', ( 2 * a0, -2 * a0 ), 1 )  # e4

    ls_22 = LinearSeries.get( [2, 2], bpt_1234 )  # |2(l1+l2)-e1-e2-e3-e4|
    ls_21 = LinearSeries.get( [2, 1], bpt_1234 )
    ls_12 = LinearSeries.get( [1, 2], bpt_1234 )
    ls_11a = LinearSeries.get( [1, 1], bpt_12 )
    ls_11b = LinearSeries.get( [1, 1], bpt_34 )

    OrbTools.p( 'linear series 22 =\n', ls_22 )
    OrbTools.p( 'linear series 21 =\n', ls_21 )
    OrbTools.p( 'linear series 12 =\n', ls_12 )
    OrbTools.p( 'linear series 11a =\n', ls_11a )
    OrbTools.p( 'linear series 11b =\n', ls_11b )

    sig = ( 4, 1 )
    pol_lst = ls_22.get_implicit_image()

    # determine signature
    x_lst = sage_PolynomialRing( sage_QQ, [ 'x' + str( i ) for i in range( sum( sig ) )] ).gens()
    for pol in pol_lst:

        if pol.degree() == 2:
            M = sage_invariant_theory.quadratic_form( pol, x_lst ).as_QuadraticForm().matrix()
            D, V = sage_matrix( sage_QQ, M ).eigenmatrix_right()  # D has first all negative values on diagonal
            cur_sig = ( len( [ d for d in D.diagonal() if d < 0 ] ), len( [ d for d in D.diagonal() if d > 0 ] ) )
        else:
            cur_sig = '[no signature]'
        OrbTools.p( '\t\t', pol, cur_sig )

    # obtain surface in sphere
    coef_lst = [0, -1, -1]
    dct = get_surf( ls_22, sig, coef_lst )

    # construct projection matrix P
    U, J = dct['UJ']
    U.swap_rows( 0, 4 )
    J.swap_columns( 0, 4 )
    J.swap_rows( 0, 4 )
    assert dct['M'] == approx_QQ( U.T * J * U )
    approxU = approx_QQ( U )
    P = sage_identity_matrix( 5 ).submatrix( 0, 0, 4, 5 )
    P[0, 4] = -1;
    P = P * approxU
    OrbTools.p( ' approx_QQ( U ) =', list( approx_QQ( U ) ) )
    OrbTools.p( ' approx_QQ( J ) =', list( approx_QQ( J ) ) )
    OrbTools.p( ' P              =', list( P ) )

    # call get_proj
    f_xyz, pmz_AB_lst = get_proj( dct['imp_lst'], dct['pmz_lst'], P )
    f_xyz_deg_lst = [f_xyz.degree( sage_var( v ) ) for v in ['x', 'y', 'z']]

    # compute reparametrization
    ring = PolyRing( 'x,y,v,w,c0,s0,c1,s1' )  # construct polynomial ring with new generators
    p_lst = ring.coerce( ls_22.pol_lst )
    x, y, v, w, c0, s0, c1, s1 = ring.gens()
    X = 1 - s0; Y = c0;  # see get_S1xS1_pmz()
    V = 1 - s1; W = c1;
    CB_dct = { x:X, y:Y, v:X * W + Y * V, w: X * V - Y * W }
    DB_dct = { x:X, y:Y, v:4 * X * W - Y * V, w: X * V + Y * W }
    EB_dct = { x:X, y:Y, v:40 * W * X ** 2 + 25 * W * Y ** 2 + 24 * V * X * Y, w:40 * V * X ** 2 + 16 * V * Y ** 2 - 15 * W * X * Y  }
    AF_dct = { x:-10 * Y * V ** 2 - 25 * Y * W ** 2 + 9 * X * V * W, y:15 * X * V ** 2 + 24 * X * W ** 2 - 15 * Y * V * W, v:V, w:W  }
    pmz_CB_lst = list( P * sage_vector( [ p.subs( CB_dct ) for p in p_lst] ) )
    pmz_DB_lst = list( P * sage_vector( [ p.subs( DB_dct ) for p in p_lst] ) )
    pmz_EB_lst = list( P * sage_vector( [ p.subs( EB_dct ) for p in p_lst] ) )
    pmz_AF_lst = list( P * sage_vector( [ p.subs( AF_dct ) for p in p_lst] ) )


    # output
    OrbTools.p( 'f_xyz =', f_xyz_deg_lst, '\n', f_xyz )
    OrbTools.p( 'pmz_AB_lst =\n', pmz_AB_lst )
    OrbTools.p( 'pmz_CB_lst =\n', pmz_CB_lst )
    OrbTools.p( 'pmz_DB_lst =\n', pmz_DB_lst )
    OrbTools.p( 'pmz_EB_lst =\n', pmz_EB_lst )
    OrbTools.p( 'pmz_AF_lst =\n', pmz_AF_lst )

    # mathematica
    pmz_lst = [ ( pmz_AB_lst, 'AB' ),
                ( pmz_CB_lst, 'CB' ),
                ( pmz_DB_lst, 'DB' ),
                ( pmz_EB_lst, 'EB' ),
                ( pmz_AF_lst, 'AF' )]

    OrbTools.p( 'Mathematica input for ParametricPlot3D:' )
    for pmz, AB in pmz_lst:
        s = 'pmz' + AB + '=' + str( pmz )
        s = s.replace( '[', '{' ).replace( ']', '}' )
        print( s )

    # PovInput for Blum cyclide
    #
    pin = PovInput()
    pin.path = './' + get_time_str() + '_blum_cyclide/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = ( 0, -7, 0 )
    pin.cam_dct['lookat'] = ( 0, 0, 0 )
    pin.cam_dct['rotate'] = ( 20, 180, 20 )
    pin.shadow = True
    pin.light_lst = [( 0, 0, -5 ), ( 0, -5, 0 ), ( -5, 0, 0 ),
                     ( 0, 0, 5 ), ( 0, 5, 0 ), ( 5, 0, 0 ),
                     ( -5, -5, -5 ), ( 5, -5, 5 ), ( -5, -5, 5 ), ( 5, -5, -5 ) ]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.height = 400
    pin.width = 800
    pin.quality = 11
    pin.ani_delay = 10
    pin.impl = None

    start0 = sage_QQ( 1 ) / 10  # step0=10 step1=15
    v0_lst = [ start0 + ( sage_QQ( i ) / 180 ) * sage_pi for i in range( 0, 360, 10 )]
    v1_lst = [ ( sage_QQ( i ) / 180 ) * sage_pi for i in range( 0, 360, 15 )]
    v1_lst_F = [ start0 + ( sage_QQ( i ) / 360 ) * sage_pi for i in range( 0, 720, 1 )]

    v1_lst_WE = [1.8, 2.3, 2.7, 3.1, 3.5, 3.8, 4.134, 4.31, 4.532, 4.7, 4.9, 5.08, 5.25, 5.405, 5.553, 5.7, 5.84]
    v1_lst_WF = [1.69, 1.87, 2.07, 2.26, 2.5, 2.72, 2.96, 3.2, 3.42, 3.65, 3.81]
    v1_lst_WD = [ 5.44, 5.56, 5.68, 5.81, 5.95, 6.1, 6.27, 6.474]  # [5.01, 5.12, 5.22, 5.32,

    v1_lst_SA = [6.5]; v1_lst_SE = [5.4];
    v1_lst_SB = [5.95]; v1_lst_SF = [2.28];
    v1_lst_SC = [4.83]; v1_lst_SD = [5.55];

    pin.pmz_dct['A'] = ( pmz_AB_lst, 0 )
    pin.pmz_dct['B'] = ( pmz_AB_lst, 1 )
    pin.pmz_dct['C'] = ( pmz_CB_lst, 0 )
    pin.pmz_dct['D'] = ( pmz_DB_lst, 0 )
    pin.pmz_dct['E'] = ( pmz_EB_lst, 0 )
    pin.pmz_dct['F'] = ( pmz_AF_lst, 1 )
    pin.pmz_dct['WD'] = ( pmz_DB_lst, 0 )
    pin.pmz_dct['WE'] = ( pmz_EB_lst, 0 )
    pin.pmz_dct['WF'] = ( pmz_AF_lst, 1 )
    pin.pmz_dct['SA'] = ( pmz_AB_lst, 0 )
    pin.pmz_dct['SB'] = ( pmz_AB_lst, 1 )
    pin.pmz_dct['SC'] = ( pmz_CB_lst, 0 )
    pin.pmz_dct['SD'] = ( pmz_DB_lst, 0 )
    pin.pmz_dct['SE'] = ( pmz_EB_lst, 0 )
    pin.pmz_dct['SF'] = ( pmz_AF_lst, 1 )
    pin.pmz_dct['FA'] = ( pmz_AB_lst, 0 )
    pin.pmz_dct['FB'] = ( pmz_AB_lst, 1 )
    pin.pmz_dct['FC'] = ( pmz_CB_lst, 0 )
    pin.pmz_dct['FD'] = ( pmz_DB_lst, 0 )
    pin.pmz_dct['FE'] = ( pmz_EB_lst, 0 )
    pin.pmz_dct['FF'] = ( pmz_AF_lst, 1 )

    pin.curve_dct['A'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['B'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['C'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['D'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['E'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['F'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}

    pin.curve_dct['WD'] = {'step0':v0_lst, 'step1':v1_lst_WD, 'prec':10, 'width':0.05}
    pin.curve_dct['WE'] = {'step0':v0_lst, 'step1':v1_lst_WE, 'prec':10, 'width':0.05}
    pin.curve_dct['WF'] = {'step0':v0_lst, 'step1':v1_lst_WF, 'prec':10, 'width':0.05}

    pin.curve_dct['SA'] = {'step0':v0_lst, 'step1':v1_lst_SA, 'prec':10, 'width':0.05}
    pin.curve_dct['SB'] = {'step0':v0_lst, 'step1':v1_lst_SB, 'prec':10, 'width':0.05}
    pin.curve_dct['SC'] = {'step0':v0_lst, 'step1':v1_lst_SC, 'prec':10, 'width':0.05}
    pin.curve_dct['SD'] = {'step0':v0_lst, 'step1':v1_lst_SD, 'prec':10, 'width':0.06}
    pin.curve_dct['SE'] = {'step0':v0_lst, 'step1':v1_lst_SE, 'prec':10, 'width':0.05}
    pin.curve_dct['SF'] = {'step0':v0_lst, 'step1':v1_lst_SF, 'prec':10, 'width':0.05}

    pin.curve_dct['FA'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FB'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FC'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FD'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FE'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FF'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}

    col_A = rgbt2pov( ( 28, 125, 154, 0 ) )  # blue
    col_B = rgbt2pov( ( 74, 33, 0, 0 ) )  # brown
    col_C = rgbt2pov( ( 75, 102, 0, 0 ) )  # green
    col_E = col_A
    col_F = col_B
    col_D = col_C
    colFF = rgbt2pov( ( 179, 200, 217, 0 ) )  # light blue

    pin.text_dct['A'] = [True, col_A, 'phong 0.2' ]
    pin.text_dct['B'] = [True, col_B, 'phong 0.2' ]
    pin.text_dct['C'] = [True, col_C, 'phong 0.2' ]
    pin.text_dct['E'] = [True, col_E, 'phong 0.2' ]
    pin.text_dct['F'] = [True, col_F, 'phong 0.2' ]
    pin.text_dct['D'] = [True, col_D, 'phong 0.2' ]
    pin.text_dct['WE'] = [True, col_E, 'phong 0.2' ]
    pin.text_dct['WF'] = [True, col_F, 'phong 0.2' ]
    pin.text_dct['WD'] = [True, col_D, 'phong 0.2' ]
    pin.text_dct['SA'] = [True, col_A, 'phong 0.2' ]
    pin.text_dct['SB'] = [True, col_B, 'phong 0.2' ]
    pin.text_dct['SC'] = [True, col_C, 'phong 0.2' ]
    pin.text_dct['SE'] = [True, col_E, 'phong 0.2' ]
    pin.text_dct['SF'] = [True, col_F, 'phong 0.2' ]
    pin.text_dct['SD'] = [True, col_D, 'phong 0.2' ]
    pin.text_dct['FA'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FC'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FE'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FF'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FD'] = [True, colFF, 'phong 0.2' ]

    # raytrace image/animation
    F_lst = ['FA', 'FB', 'FC']
    S_lst = ['SA', 'SB', 'SC', 'SD', 'SE', 'SF']
    create_pov( pin, ['A', 'B', 'C'] )
    create_pov( pin, ['A', 'B', 'C'] + F_lst )
    create_pov( pin, ['WD', 'WE', 'WF'] )
    create_pov( pin, ['WD', 'WE', 'WF'] + F_lst )
    create_pov( pin, S_lst + F_lst )

    # ABC - EFD
    create_pov( pin, ['A', 'B'] + F_lst )
    create_pov( pin, ['E', 'F'] + F_lst )
def ring_cyclide():
    '''
    Creates povray image of 4 families of circles on a ring cyclide. 
    '''

    # We construct a trigonometric parametrization of the ring cyclide,
    # by rotating a circle of radius r along a circle of radius R.
    R = 2
    r = 1
    x, y, v, w, c0, s0, c1, s1 = sage_var('x,y,v,w,c0,s0,c1,s1')
    V = sage_vector([r * c0 + R, 0, r * s0])
    M = sage_matrix([(c1, -s1, 0), (s1, c1, 0), (0, 0, 1)])
    pmz_AB_lst = [1] + list(M * V)
    OrbTools.p('pmz_AB_lst =', pmz_AB_lst)
    for pmz in pmz_AB_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # convert pmz_AB_lst to rational parametrization pmz_lst
    C0 = (y**2 - x**2) / (y**2 + x**2)
    S0 = 2 * x * y / (y**2 + x**2)
    C1 = (w**2 - v**2) / (w**2 + v**2)
    S1 = 2 * v * w / (w**2 + v**2)
    den = (y**2 + x**2) * (w**2 + v**2)
    dct = {c0: C0, s0: S0, c1: C1, s1: S1}
    pmz_lst = [den] + [(elt.subs(dct) * den).simplify_full()
                       for elt in list(M * V)]
    OrbTools.p('pmz_lst =', pmz_lst)

    # find basepoints
    ls = LinearSeries(pmz_lst, PolyRing('x,y,v,w', True))
    OrbTools.p(ls.get_bp_tree())

    # construct linear series for families of conics
    a0, a1 = PolyRing('x,y,v,w').ext_num_field('t^2+1/3').ext_num_field(
        't^2+1').root_gens()

    p1 = ['xv', (-a0, a1)]
    p2 = ['xv', (a0, -a1)]
    p3 = ['xv', (-a0, -a1)]
    p4 = ['xv', (a0, a1)]

    bpt_1234 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_1234.add(p1[0], p1[1], 1)
    bpt_1234.add(p2[0], p2[1], 1)
    bpt_1234.add(p3[0], p3[1], 1)
    bpt_1234.add(p4[0], p4[1], 1)

    bpt_12 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_12.add(p1[0], p1[1], 1)
    bpt_12.add(p2[0], p2[1], 1)

    bpt_34 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_34.add(p3[0], p3[1], 1)
    bpt_34.add(p4[0], p4[1], 1)

    ls_22 = LinearSeries.get([2, 2], bpt_1234)  # |2(l1+l2)-e1-e2-e3-e4|
    ls_21 = LinearSeries.get([2, 1], bpt_1234)
    ls_12 = LinearSeries.get([1, 2], bpt_1234)
    ls_11a = LinearSeries.get([1, 1], bpt_12)
    ls_11b = LinearSeries.get([1, 1], bpt_34)

    OrbTools.p('linear series 22 =\n', ls_22)
    OrbTools.p('linear series 21 =\n', ls_21)
    OrbTools.p('linear series 12 =\n', ls_12)
    OrbTools.p('linear series 11a =\n', ls_11a)
    OrbTools.p('linear series 11b =\n', ls_11b)

    # compute reparametrization
    ring = PolyRing(
        'x,y,v,w,c0,s0,c1,s1')  # construct polynomial ring with new generators
    pmz_lst = ring.coerce(pmz_lst)
    x, y, v, w, c0, s0, c1, s1 = ring.gens()
    X = 1 - s0
    Y = c0
    # see get_S1xS1_pmz()
    V = 1 - s1
    W = c1
    q = sage_n(sage_sqrt(3)).exact_rational()  # approximation of sqrt(3)
    CB_dct = {x: X, y: Y, v: W * X + q * V * Y, w: V * X - q * W * Y}
    DB_dct = {x: X, y: Y, v: W * X - q * V * Y, w: V * X + q * W * Y}
    pmz_CB_lst = [pmz.subs(CB_dct) for pmz in pmz_lst]
    pmz_DB_lst = [pmz.subs(DB_dct) for pmz in pmz_lst]

    # output
    OrbTools.p('pmz_AB_lst =\n', pmz_AB_lst)
    OrbTools.p('pmz_CB_lst =\n', pmz_CB_lst)
    OrbTools.p('pmz_DB_lst =\n', pmz_DB_lst)

    # mathematica
    for pmz, AB in [(pmz_AB_lst, 'AB'), (pmz_CB_lst, 'CB'),
                    (pmz_DB_lst, 'DB')]:
        s = 'pmz' + AB + '=' + str(pmz) + ';'
        s = s.replace('[', '{').replace(']', '}')
        print(s)

    # PovInput ring cyclide
    #
    pin = PovInput()

    pin.path = './' + get_time_str() + '_ring_cyclide/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = (0, -7, 0)
    pin.cam_dct['lookat'] = (0, 0, 0)
    pin.cam_dct['rotate'] = (55, 0, 0)  # 45
    pin.shadow = True
    pin.light_lst = [(0, 0, -5), (0, -5, 0), (-5, 0, 0), (0, 0, 5), (0, 5, 0),
                     (5, 0, 0), (-5, -5, -5), (5, -5, 5), (-5, -5, 5),
                     (5, -5, -5)]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.width = 800
    pin.height = 400
    pin.quality = 11
    pin.ani_delay = 10

    pin.impl = None

    pin.pmz_dct['A'] = (pmz_AB_lst, 0)
    pin.pmz_dct['B'] = (pmz_AB_lst, 1)
    pin.pmz_dct['C'] = (pmz_CB_lst, 0)
    pin.pmz_dct['D'] = (pmz_DB_lst, 0)
    pin.pmz_dct['FA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['FB'] = (pmz_AB_lst, 1)
    pin.pmz_dct['FC'] = (pmz_CB_lst, 0)
    pin.pmz_dct['FD'] = (pmz_DB_lst, 0)
    pin.pmz_dct['WA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['WB'] = (pmz_AB_lst, 1)
    pin.pmz_dct['WC'] = (pmz_CB_lst, 0)
    pin.pmz_dct['WD'] = (pmz_DB_lst, 0)

    v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]
    v1_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 24)]

    v1_lst_A = [
        sage_pi / 2 + (sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 12)
    ]
    v1_lstFF = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 1)]

    v1_lst_WA = [
        0.1, 0.52, 0.94, 1.36, 1.78, 2.2, 2.61, 3.04, 3.45, 3.88, 4.3, 4.712,
        5.13, 5.55, 5.965
    ]
    v1_lst_WB = [
        0, 0.7, 1.31, 1.8, 2.18, 2.5, 2.77, 3.015, 3.26, 3.51, 3.78, 4.099,
        4.49, 4.97, 5.579
    ]
    v1_lst_WD = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 24)]
    v1_lst_WC = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 24)]

    pin.curve_dct['A'] = {
        'step0': v0_lst,
        'step1': v1_lst_A,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['B'] = {
        'step0': v0_lst,
        'step1': v1_lst,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['C'] = {
        'step0': v0_lst,
        'step1': v1_lst,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['D'] = {
        'step0': v0_lst,
        'step1': v1_lst,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['FA'] = {
        'step0': v0_lst,
        'step1': v1_lstFF,
        'prec': 10,
        'width': 0.02
    }
    pin.curve_dct['FB'] = {
        'step0': v0_lst,
        'step1': v1_lstFF,
        'prec': 10,
        'width': 0.02
    }
    pin.curve_dct['FC'] = {
        'step0': v0_lst,
        'step1': v1_lstFF,
        'prec': 10,
        'width': 0.02
    }
    pin.curve_dct['FD'] = {
        'step0': v0_lst,
        'step1': v1_lstFF,
        'prec': 10,
        'width': 0.02
    }
    pin.curve_dct['WA'] = {
        'step0': v0_lst,
        'step1': v1_lst_WA,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['WB'] = {
        'step0': v0_lst,
        'step1': v1_lst_WB,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['WC'] = {
        'step0': v0_lst,
        'step1': v1_lst_WC,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['WD'] = {
        'step0': v0_lst,
        'step1': v1_lst_WD,
        'prec': 10,
        'width': 0.05
    }

    # A = | rotated circle
    # B = - horizontal circle
    # C = / villarceau circle
    # D = \ villarceau circle
    col_A = rgbt2pov((28, 125, 154, 0))  # blue
    col_B = rgbt2pov((74, 33, 0, 0))  # brown
    col_C = rgbt2pov((75, 102, 0, 0))  # green
    col_D = rgbt2pov((187, 46, 0, 0))  # red/orange
    colFF = rgbt2pov((179, 200, 217, 0))  # light blue

    pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5']
    pin.text_dct['D'] = [True, col_D, 'phong 0.2 phong_size 5']
    pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FD'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['WA'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['WB'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['WC'] = [True, col_C, 'phong 0.2 phong_size 5']
    pin.text_dct['WD'] = [True, col_D, 'phong 0.2 phong_size 5']

    # raytrace image/animation
    create_pov(pin, ['A', 'C', 'D'])
    create_pov(pin, ['A', 'C', 'D'] + ['FA', 'FC', 'FD'])

    create_pov(pin, ['WA', 'WB', 'WC', 'WD'])
    create_pov(pin, ['WA', 'WB', 'WC', 'WD'] + ['FA', 'FC', 'FD'])

    create_pov(pin, ['WA', 'WB', 'WD'])
    create_pov(pin, ['WA', 'WB', 'WD'] + ['FA', 'FC', 'FD'])
Exemple #15
0
def get_project( pol_lst, pmat ):
    '''
    Parameters
    ----------
    pol_lst : list<OrbRing.R> 
        A list of homogeneous polynomials in QQ[x0,...,x8].
    
    pmat : sage_matrix    
        A matrix defined over the rationals QQ.    
    
    Returns
    -------
    tuple
        A 2-tuple of polynomials:        
        * a homogeneous polynomial F in QQ[x0,x1,x2,x3].             
        * F(1,x,y,z) in QQ[x,y,z] (affine polynomial)
    '''

    Ry = sage_PolynomialRing( sage_GF( 2 ), sage_var( 'y0,y1,y2,y3,y4,y5,y6,y7,y8' ), order = 'degrevlex' )
    v = OrbRing.coerce( '[v0,v1,v2,v3,v4,v5,v6,v7,v8]' )
    x = OrbRing.coerce( '[x0,x1,x2,x3,x4,x5,x6,x7,x8]' )
    vx_dct = {v[i]:x[i] for i in range( 9 )}

    OrbTools.p( "\n" + str( pmat ) )

    tries = 0
    projected = False
    while not projected:

        # obtain the linear equations of the projection map
        pmat = sage_matrix( OrbRing.R, list( pmat ) )
        leq_lst = list( pmat * sage_vector( x ) )

        # compute the image of this projection map
        proj_lst = [ v[i] - leq_lst[i] for i in range( len( leq_lst ) ) ]
        p_lst = sage_ideal( pol_lst + proj_lst ).elimination_ideal( x ).gens()

        # obtain a polynomial in x0,...,x8
        p_lst = [p.subs( vx_dct ) for p in p_lst]
        fx = p_lst[0]

        tries += 1
        if len( fx.variables() ) < 4 or len( p_lst ) != 1:

            pmat = get_pmat( True )

            if tries % 100 == 0:
                OrbTools.p( 'tries =', tries, p_lst )

            if tries == 1000:
                return -1
        else:
            projected = True

    w0, w1, w2, w3 = fx.variables()
    fx = fx.subs( {w0:x[0], w1:x[1], w2:x[2], w3:x[3]} )

    x0, x1, x2, x3 = OrbRing.coerce( 'x0,x1,x2,x3' )
    x, y, z = sage_var( 'x,y,z' )
    fxyz = fx.subs( {x0:1, x1:x, x2:y, x3:z} )

    OrbTools.p( fx )
    OrbTools.p( fxyz )

    return fx, fxyz
def get_imp(A, B, prj, sng, snp):
    '''
    Computes implicit equation of a stereographic projection S of 
    the pointwise Hamiltonian product of circles in the sphere S^3 
    defined by transformations of the standard circle [1,cos(a),sin(a),0,0]
    by A and B respectively.     
        
    Parameters
    ----------
    A : sage_Matrix<sage_QQ>
        Represents a linear transformation S^3--->S^3
    
    B : sage_Matrix<sage_QQ>
        Represents a linear transformation S^3--->S^3
    
    prj : int
        Choice for stereographic projection S^3--->P^3: 
        0: (x0:x1:x2:x3:x4) |--> (x0-x4:x1:x2:x3)
        1: (x0:x1:x2:x3:x4) |--> (x0-x1:x4:x2:x3)
        2: (x0:x1:x2:x3:x4) |--> (x0-x2:x1:x4:x3)
        3: (x0:x1:x2:x3:x4) |--> (x0-x3:x1:x2:x4)
    
    sng : boolean
        If true computes singular locus of S. Needs Magma path set
        in os.environ['PATH']. Otherwise the empty-list is returned.

    snp : boolean
        If true and if sng is True, then the singular locus is 
        computed with a probablistic method, which is faster but
        the correctness of the output is not guaranteed.
        
    Returns
    -------
    dict
        {   
            'Agreat' : boolean
                If True, then circle A is great.
                
            'Bgreat' : boolean
                If True, then circle B is great.
            
            'eqn_x'  : sage_PolynomialRing
                Equation of S in x0,...,x3

            'eqn_str':
                Formatted equation in x0,...,x3 of the 
                form f(x1:x2:x3)+x0*g(x0:x1:x2:x3).
            
            'eqn_xyz':
                Equation of S in x,y,z
                        
            'sng_lst':
                Empty-list if Magma is not installed or 
                list of singularities of S otherwise.
        }
        
    '''

    dct = {}  # output

    # create polynomial ring
    #
    R = sage_PolynomialRing(sage_QQ,
                            'x0,x1,x2,x3,a0,a1,a2,a3,a4,b0,b1,b2,b3,b4')
    x0, x1, x2, x3, a0, a1, a2, a3, a4, b0, b1, b2, b3, b4 = R.gens()

    # construct ideal for A
    #
    sv = [0, 0, 0, 1, 0]
    tv = [0, 0, 0, 0, 1]
    u0, u1, u2, u3, u4 = list(A * sage_vector(sv))
    v0, v1, v2, v3, v4 = list(A * sage_vector(tv))
    eqA = [-a0**2 + a1**2 + a2**2 + a3**2 + a4**2]
    eqA += [u0 * a0 + u1 * a1 + u2 * a2 + u3 * a3 + u4 * a4]
    eqA += [v0 * a0 + v1 * a1 + v2 * a2 + v3 * a3 + v4 * a4]
    dct['Agreat'] = u0 == v0 == 0

    # construct ideal for B
    #
    u0, u1, u2, u3, u4 = list(B * sage_vector(sv))
    v0, v1, v2, v3, v4 = list(B * sage_vector(tv))
    eqB = [-b0**2 + b1**2 + b2**2 + b3**2 + b4**2]
    eqB += [u0 * b0 + u1 * b1 + u2 * b2 + u3 * b3 + u4 * b4]
    eqB += [v0 * b0 + v1 * b1 + v2 * b2 + v3 * b3 + v4 * b4]
    dct['Bgreat'] = u0 == v0 == 0

    # stereographic projection
    #
    if prj == 0: j, i_lst = 4, [1, 2, 3]
    if prj == 1: j, i_lst = 1, [4, 2, 3]
    if prj == 2: j, i_lst = 2, [1, 4, 3]
    if prj == 3: j, i_lst = 3, [1, 2, 4]

    # construct equation of for projection of A*B
    #
    c = c0, c1, c2, c3, c4 = get_hp_P4([a0, a1, a2, a3, a4],
                                       [b0, b1, b2, b3, b4])
    x = [x0, x1, x2, x3]
    i1, i2, i3 = i_lst
    id = [x[0] -
          (c[0] - c[j]), x[1] - c[i1], x2 - c[i2], x3 - c[i3]] + eqA + eqB
    dct['eqn_x'] = eqn_x = R.ideal(id).elimination_ideal(
        [a0, a1, a2, a3, a4, b0, b1, b2, b3, b4]).gens()[0]

    # get equation in string form
    #
    f = eqn_x.subs({x0: 0})
    dct['eqn_str'] = str(sage_factor(f)) + '+' + str(sage_factor(eqn_x - f))
    xs, ys, zs = sage_var('x,y,z')
    dct['eqn_xyz'] = sage_SR(eqn_x.subs({x0: 1, x1: xs, x2: ys, x3: zs}))

    # compute singular locus
    #
    dct['sng_lst'] = []
    if sng:
        dct['sng_lst'] = get_sing_lst(OrbRing.coerce(eqn_x), snp)

    return dct
Exemple #17
0
def spindle_cyclide():
    '''
    Constructs a povray image of a spindle cyclide. The spindle cyclide is
    an inversion of a circular cylinder.
    '''

    # We construct a trigonometric parametrization
    # of the cyclide by rotating a circle.
    #
    r = 1
    R = 1
    # radii of circles
    x, y, v, w = sage_var('x,y,v,w')
    c0, s0, c1, s1 = sage_var('c0,s0,c1,s1')
    V = sage_vector([r * c0 + R, 0, r * s0])
    M = sage_matrix([(c1, -s1, 0), (s1, c1, 0), (0, 0, 1)])
    pmz_AB_lst = [1] + list(M * V)
    OrbTools.p('pmz_AB_lst =', pmz_AB_lst)
    for pmz in pmz_AB_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # PovInput spindle cyclide
    #
    pin = PovInput()

    pin.path = './' + get_time_str() + '_spindle_cyclide/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = (0, -5, 0)
    pin.cam_dct['lookat'] = (0, 0, 0)
    pin.cam_dct['rotate'] = (45, 0, 0)
    pin.shadow = True
    pin.light_lst = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0),
                     (0, 0, -1), (10, 0, 0), (0, 10, 0), (0, 0, 10),
                     (-10, 0, 0), (0, -10, 0), (0, 0, -10)]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.height = 400
    pin.width = 800
    pin.quality = 11
    pin.ani_delay = 10

    pin.impl = None

    pin.pmz_dct['A'] = (pmz_AB_lst, 0)
    pin.pmz_dct['B'] = (pmz_AB_lst, 1)

    pin.pmz_dct['FA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['FB'] = (pmz_AB_lst, 1)

    v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]

    v1_lst_A = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 270, 15)]
    v1_lst_B = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 15)]

    v1_lstFA = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 270 - 15, 1)]
    v1_lstFB = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 1)]

    pin.curve_dct['A'] = {
        'step0': v0_lst,
        'step1': v1_lst_A,
        'prec': 10,
        'width': 0.03
    }
    pin.curve_dct['B'] = {
        'step0': v0_lst,
        'step1': v1_lst_B,
        'prec': 10,
        'width': 0.03
    }
    pin.curve_dct['FA'] = {
        'step0': v0_lst,
        'step1': v1_lstFA,
        'prec': 10,
        'width': 0.02
    }
    pin.curve_dct['FB'] = {
        'step0': v0_lst,
        'step1': v1_lstFB,
        'prec': 10,
        'width': 0.02
    }

    col_A = (0.6, 0.4, 0.1, 0.0)
    col_B = (0.1, 0.15, 0.0, 0.0)
    colFF = (0.1, 0.1, 0.1, 0.0)
    pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5']

    # raytrace image/animation
    create_pov(pin, ['A', 'B'])
    create_pov(pin, ['A', 'B', 'FA', 'FB'])
Exemple #18
0
def get_sing_lst( pol, probable = True ):
    '''
    The method requires that the magma-command 
    is in "os.environ['PATH']".    
    See [http://magma.maths.usyd.edu.au/magma/].
    
    Parameters
    ----------
    pol : OrbRing.R       
        A homogeneous polynomial in QQ[x0,x1,x2,x3].
        
    probable : boolean
        If True, performs a non-deterministic version of a 
        radical decomposition algorithm, which is faster.
        The correctness of output is not guaranteed in this case.
    
    Returns
    -------
    list
        Suppose that X is the surface defined by the zero-set of "pol".
        The output is a list           
            [ (<I>, <H>), ... ]          
        where <I> is the ideal of a component in singular locus of X, 
        and <H> is the Hilbert polynomial of this ideal.
        If Magma is not accessible, then the empty-list [] is returned.
        
    '''
    x0, x1, x2, x3 = OrbRing.coerce( 'x0,x1,x2,x3' )
    df_str = str( [sage_diff( pol, x0 ), sage_diff( pol, x1 ), sage_diff( pol, x2 ), sage_diff( pol, x3 )] )[1:-1]

    OrbTools.p( df_str )

    mi = ''
    mi += 'P<x0,x1,x2,x3> := PolynomialRing(RationalField(), 4);\n'
    mi += 'MI := ideal< P |' + df_str + '>;\n'

    if probable:
        mi += 'MD := ProbableRadicalDecomposition( MI );\n'
    else:
        mi += 'MD := RadicalDecomposition( MI );\n'
    mi += '#MD;\n'

    try:
        mo1 = int( sage_magma.eval( mi ) )
    except:
        return []

    sing_lst = []
    Ry = sage_PolynomialRing( OrbRing.num_field, sage_var( 'y0,y1,y2,y3' ), order = 'degrevlex' )
    for idx in range( mo1 ):

        comp = str( sage_magma.eval( 'Basis(MD[' + str( idx + 1 ) + ']);\n' ) )
        comp = comp.replace( '\n', '' )

        # compute hilbert polynomial of component in singular locus
        compy = sage__eval( comp.replace( 'x', 'y' ), Ry.gens_dict() )
        idy = Ry.ideal( compy )
        hpol = idy.hilbert_polynomial()

        sing_lst += [( comp, hpol )]
        OrbTools.p( idx, sing_lst[-1] )

    OrbTools.p( sing_lst )

    return sing_lst