Exemple #1
0
def random_intalpha(startdate='20140103', freq='30min', n=None):
    if not n >= 0:
        n = np.random.randint(10, 20)
    dates = dateutil.get_startfrom(DATES,
                                   dateutil.compliment_datestring(str(startdate), -1, True),
                                   n)
    times = dateutil.generate_intervals(int(freq[:-3])*60)
    dts = pd.to_datetime([d+' '+t for d in dates for t in times])
    df = pd.DataFrame(np.random.randn(len(dts), len(SIDS)), index=dts, columns=SIDS)
    return df
Exemple #2
0
def random_alpha(startdate='20140103', n=None, datetime_index=True):
    """Generate a random alpha(i.e. a DataFrame of random floats with DatetimeINdex and full sids columns).

    :param startdate: Starting point. Default: '20140103'
    :type startdate: int, str
    :param int n: Length of the returned DataFrame; when None, it will be a random number between 50 and 100. Default: None
    :param boolean datetime_index: Whether to format the DataFrame with DatetimeIndex. Default: True
    """
    if not n >= 0:
        n = np.random.randint(50, 100)
    dates = dateutil.get_startfrom(DATES,
                                   dateutil.compliment_datestring(str(startdate), -1, True),
                                   n)
    df = pd.DataFrame(np.random.randn(n, len(SIDS)), index=dates, columns=SIDS)
    if datetime_index:
        df.index = pd.to_datetime(df.index)
    return df
Exemple #3
0
    frames_equal,
)
from orca.utils import dateutil
from orca.universe.special import (
    TickerFilter,
    TradingDaysFilter,
    ActiveFilter,
    ComponentsFilter,
    IndustryFilter,
)
from orca.universe.rules import (
    startswith,
    count_gt,
)

window = dateutil.get_startfrom(DATES, '20140104', 50)
close = QuoteFetcher(datetime_index=True,
                     reindex=True).fetch_window('close', window)
hs300 = ComponentsFetcher(datetime_index=True,
                          reindex=True).fetch_window('HS300', window)
sector = IndustryFetcher(datetime_index=True,
                         reindex=True).fetch_window('sector', window)


class SpecialTestCase(unittest.TestCase):
    def test_ticker_filter(self):
        sh = TickerFilter(startswith('60')).filter_daily(window[0])
        dct = {sid: sid[:2] == '60' for sid in SIDS}
        self.assertEqual(sh.to_dict(), dct)

    def test_trading_days_filter(self):
Exemple #4
0
 def setUp(self):
     self.fetcher = IndexQuoteFetcher()
     self.dates = dateutil.get_startfrom(DATES, '20140101', 20)
Exemple #5
0
 def setUp(self):
     self.fetcher = KDayFetcherDummy()
     self.dates_str = dateutil.get_startfrom(DATES, '20140101', 50)
     self.dates_pddt = pd.to_datetime(self.dates_str)
Exemple #6
0
 def setUp(self):
     self.fetcher = KMinFetcherDummy()
     self.dates_str = dateutil.get_startfrom(DATES, '20140101', 50)
     self.times = list(
         dateutil.generate_timestamps('100000', '113000', 30 * 60))
     self.dates_pddt = pd.to_datetime(self.dates_str)
Exemple #7
0
 def setUp(self):
     self.filter = SimpleDataFilterDummy()
     self.fetcher = QuoteFetcher(datetime_index=True, reindex=True)
     self.dates = dateutil.get_startfrom(DATES, '20140801', 20)
     self.startdate, self.enddate = self.dates[0], self.dates[-1]
     self.si, self.ei = map(DATES.index, [self.startdate, self.enddate])
 def setUp(self):
     self.fetcher = ComponentsFetcher()
     self.dates = dateutil.get_startfrom(DATES, '20140101', 10)
Exemple #9
0
 def setUp(self):
     self.adjfetcher = AdjQuoteFetcher()
     self.fetcher = QuoteFetcher()
     self.dates = get_startfrom(DATES, '20140101', 50)
Exemple #10
0
 def setUp(self):
     self.fetcher = KDayFetcherDummy()
     self.dates_str = dateutil.get_startfrom(DATES, '20140101', 50)
     self.dates_pddt = pd.to_datetime(self.dates_str)
Exemple #11
0
 def setUp(self):
     self.fetcher = KMinFetcherDummy()
     self.dates_str = dateutil.get_startfrom(DATES, '20140101', 50)
     self.times = list(dateutil.generate_timestamps('100000', '113000', 30*60))
     self.dates_pddt = pd.to_datetime(self.dates_str)
Exemple #12
0
import numpy as np
import pandas as pd

from orca import (
        DATES,
        SIDS,
        )
from orca.utils.testing import (
        series_equal,
        frames_equal,
        )
from orca.utils import dateutil
from orca.perf.analyser import Analyser
from orca.perf.performance import Performance

dates = pd.to_datetime(dateutil.get_startfrom(DATES, '20140101', 120))
alpha1 = pd.DataFrame(np.random.randn(len(dates), len(SIDS)), index=dates, columns=SIDS)
valid = pd.DataFrame(np.random.randint(3, size=alpha1.shape), index=dates, columns=SIDS).astype(bool)
alpha1[~valid] = np.nan
# long-short alpha
alpha1 = alpha1.subtract(alpha1.mean(axis=1), axis=0)

valid = pd.DataFrame(np.random.randint(4, size=alpha1.shape), index=dates, columns=SIDS).astype(bool)
data = pd.DataFrame(np.random.randn(*alpha1.shape), index=dates, columns=SIDS)
data[~valid] = np.nan

# long part
alpha2 = alpha1[alpha1>0]
# short part
alpha3 = -alpha1[alpha1<0]
Exemple #13
0
 def setUp(self):
     self.filter = SimpleDataFilterDummy()
     self.fetcher = QuoteFetcher(datetime_index=True, reindex=True)
     self.dates = dateutil.get_startfrom(DATES, '20140801', 20)
     self.startdate, self.enddate = self.dates[0], self.dates[-1]
     self.si, self.ei = map(DATES.index, [self.startdate, self.enddate])
Exemple #14
0
        frames_equal,
        )
from orca.utils import dateutil
from orca.universe.special import (
        TickerFilter,
        TradingDaysFilter,
        ActiveFilter,
        ComponentsFilter,
        IndustryFilter,
        )
from orca.universe.rules import (
        startswith,
        count_gt,
        )

window = dateutil.get_startfrom(DATES, '20140104', 50)
close = QuoteFetcher(datetime_index=True, reindex=True).fetch_window('close', window)
hs300 = ComponentsFetcher(datetime_index=True, reindex=True).fetch_window('HS300', window)
sector = IndustryFetcher(datetime_index=True, reindex=True).fetch_window('sector', window)


class SpecialTestCase(unittest.TestCase):

    def test_ticker_filter(self):
        sh = TickerFilter(startswith('60')).filter_daily(window[0])
        dct = {sid: sid[:2] == '60' for sid in SIDS}
        self.assertEqual(sh.to_dict(), dct)

    def test_trading_days_filter(self):
        trd_filter = TradingDaysFilter(50, count_gt(40), delay=0)
        trd1 = trd_filter.filter_daily(window[-1])
Exemple #15
0
import numpy as np
import pandas as pd

from orca import (
    DATES,
    SIDS,
)
from orca.utils.testing import (
    series_equal,
    frames_equal,
)
from orca.utils import dateutil
from orca.perf.analyser import Analyser
from orca.perf.performance import Performance

dates = pd.to_datetime(dateutil.get_startfrom(DATES, '20140101', 120))
alpha1 = pd.DataFrame(np.random.randn(len(dates), len(SIDS)),
                      index=dates,
                      columns=SIDS)
valid = pd.DataFrame(np.random.randint(3, size=alpha1.shape),
                     index=dates,
                     columns=SIDS).astype(bool)
alpha1[~valid] = np.nan
# long-short alpha
alpha1 = alpha1.subtract(alpha1.mean(axis=1), axis=0)

valid = pd.DataFrame(np.random.randint(4, size=alpha1.shape),
                     index=dates,
                     columns=SIDS).astype(bool)
data = pd.DataFrame(np.random.randn(*alpha1.shape), index=dates, columns=SIDS)
data[~valid] = np.nan
Exemple #16
0
 def setUp(self):
     self.fetcher = QuoteFetcher()
     self.dates = get_startfrom(DATES, '2014010', 50)
Exemple #17
0
 def setUp(self):
     self.fetcher = ComponentsFetcher()
     self.dates = dateutil.get_startfrom(DATES, '20140101', 10)