Exemple #1
0
    def setUp(self):
        super(Test_Bug1763, self).setUp()

        self.analyzer = StandardAnalyzer(Version.LUCENE_CURRENT)
        self.d1 = RAMDirectory()
        self.d2 = RAMDirectory()

        w1, w2 = [
            self.getWriter(directory=d, analyzer=self.analyzer)
            for d in [self.d1, self.d2]
        ]
        doc1 = Document()
        doc2 = Document()
        doc1.add(
            Field("all", "blah blah double blah Gesundheit",
                  TextField.TYPE_NOT_STORED))
        doc1.add(Field('id', '1', StoredField.TYPE))
        doc2.add(
            Field("all", "a quick brown test ran over the lazy data",
                  TextField.TYPE_NOT_STORED))
        doc2.add(Field('id', '2', StoredField.TYPE))
        w1.addDocument(doc1)
        w2.addDocument(doc2)
        for w in [w1, w2]:
            w.close()
Exemple #2
0
class PyLuceneTestCase(TestCase):
    def __init__(self, *args):
        super(PyLuceneTestCase, self).__init__(*args)

    def setUp(self):
        self.directory = RAMDirectory()

    def tearDown(self):
        self.directory.close()

    def getConfig(self, analyzer=None):
        return IndexWriterConfig(analyzer)

    def getWriter(self,
                  directory=None,
                  analyzer=None,
                  open_mode=None,
                  similarity=None,
                  maxBufferedDocs=None,
                  mergePolicy=None):
        if analyzer is None:
            analyzer = LimitTokenCountAnalyzer(WhitespaceAnalyzer(), 10000)
        config = self.getConfig(analyzer)

        if open_mode is None:
            open_mode = IndexWriterConfig.OpenMode.CREATE
        config.setOpenMode(open_mode)
        if similarity is not None:
            config.setSimilarity(similarity)
        if maxBufferedDocs is not None:
            config.setMaxBufferedDocs(maxBufferedDocs)
        if mergePolicy is not None:
            config.setMergePolicy(mergePolicy)

        if directory is None:
            directory = self.directory

        return IndexWriter(directory, config)

    def getSearcher(self, directory=None, reader=None):
        if reader is not None:
            return IndexSearcher(reader)
        return IndexSearcher(self.getReader(directory=directory))

    def getReader(self, directory=None):
        if directory is None:
            directory = self.directory
        return DirectoryReader.open(directory)

    def getOnlyLeafReader(self, reader):
        subReaders = reader.leaves()
        if subReaders.size() != 1:
            raise ValueError(reader + " has " + subReaders.size() +
                             " segments instead of exactly one")
        return subReaders.get(0).reader()
class PyLuceneTestCase(TestCase):

    def __init__(self, *args):
        super(PyLuceneTestCase, self).__init__(*args)

    def setUp(self):
        self.directory = RAMDirectory()

    def tearDown(self):
        self.directory.close()

    def getConfig(self, analyzer=None):
        return IndexWriterConfig(analyzer)

    def getWriter(self, directory=None, analyzer=None, open_mode=None,
                  similarity=None, maxBufferedDocs=None, mergePolicy=None):
        if analyzer is None:
            analyzer = LimitTokenCountAnalyzer(WhitespaceAnalyzer(), 10000)
        config = self.getConfig(analyzer)

        if open_mode is None:
            open_mode = IndexWriterConfig.OpenMode.CREATE
        config.setOpenMode(open_mode)
        if similarity is not None:
            config.setSimilarity(similarity)
        if maxBufferedDocs is not None:
            config.setMaxBufferedDocs(maxBufferedDocs)
        if mergePolicy is not None:
            config.setMergePolicy(mergePolicy)

        if directory is None:
            directory = self.directory

        return IndexWriter(directory, config)

    def getSearcher(self, directory=None, reader=None):
        if reader is not None:
            return IndexSearcher(reader)
        return IndexSearcher(self.getReader(directory=directory))

    def getReader(self, directory=None):
        if directory is None:
            directory = self.directory
        return DirectoryReader.open(directory)

    def getOnlyLeafReader(self, reader):
        subReaders = reader.leaves()
        if subReaders.size() != 1:
            raise ValueError(reader + " has " + subReaders.size() +
                             " segments instead of exactly one")
        return subReaders.get(0).reader()
Exemple #4
0
class PyLuceneTestCase(TestCase):
    def __init__(self, *args):
        super(PyLuceneTestCase, self).__init__(*args)
        self.TEST_VERSION = Version.LUCENE_CURRENT

    def setUp(self):
        self.directory = RAMDirectory()

    def tearDown(self):
        self.directory.close()

    def getConfig(self, analyzer=None):
        return IndexWriterConfig(self.TEST_VERSION, analyzer)

    def getWriter(self,
                  directory=None,
                  analyzer=None,
                  open_mode=None,
                  similarity=None,
                  maxBufferedDocs=None,
                  mergePolicy=None):
        if analyzer is None:
            analyzer = LimitTokenCountAnalyzer(
                WhitespaceAnalyzer(self.TEST_VERSION), 10000)
        config = self.getConfig(analyzer)

        if open_mode is None:
            open_mode = IndexWriterConfig.OpenMode.CREATE
        config.setOpenMode(open_mode)
        if similarity is not None:
            config.setSimilarity(similarity)
        if maxBufferedDocs is not None:
            config.setMaxBufferedDocs(maxBufferedDocs)
        if mergePolicy is not None:
            config.setMergePolicy(mergePolicy)

        if directory is None:
            directory = self.directory

        return IndexWriter(directory, config)

    def getSearcher(self, directory=None, reader=None):
        if reader is not None:
            return IndexSearcher(reader)
        return IndexSearcher(self.getReader(directory=directory))

    def getReader(self, directory=None):
        if directory is None:
            directory = self.directory
        return DirectoryReader.open(directory)
    def __init__(self, folder=None, fields=[], similarity="tfidf"):

        self.jcc = lucene.initVM()

        if folder:
            self.directory = SimpleFSDirectory(File(folder))
        else:
            self.directory = RAMDirectory()

        self.fields = {}

        for field in fields:
            ft = FieldType()
            for pname, pvalue in field.props.items():
                setter = getattr(ft, "set" + pname.capitalize())
                setter(pvalue)

            ft.setIndexOptions(FieldInfo.IndexOptions.DOCS_AND_FREQS)
            # 			ft.setOmitNorms(True)

            self.fields[field.name] = ft

        self.similarity = similarity.lower()
        self.analyzer = StandardAnalyzer(Version.LUCENE_CURRENT)
        self.writer = None
        self.searcher = None
 def __init__(self):
     # self.analyzer = StandardAnalyzer()
     # self.analyzer = PersianAnalyzer(StopFilter.makeStopSet(sw))
     # self.analyzer = PersianAnalyzer()
     self.analyzer = StopAnalyzer(Paths.get(Config.stop_words_address))
     self.config = IndexWriterConfig(self.analyzer)
     self.index = RAMDirectory()
     self.w = IndexWriter(self.index, self.config)
class PyLuceneTestCase(TestCase):

    def __init__(self, *args):
        super(PyLuceneTestCase, self).__init__(*args)
        self.TEST_VERSION = Version.LUCENE_CURRENT

    def setUp(self):
        self.directory = RAMDirectory()

    def tearDown(self):
        self.directory.close()

    def getConfig(self, analyzer=None):
        return IndexWriterConfig(self.TEST_VERSION, analyzer)
        
    def getWriter(self, directory=None, analyzer=None, open_mode=None,
                  similarity=None, maxBufferedDocs=None, mergePolicy=None):
        if analyzer is None:
            analyzer = LimitTokenCountAnalyzer(WhitespaceAnalyzer(self.TEST_VERSION), 10000)
        config = self.getConfig(analyzer)

        if open_mode is None:
            open_mode = IndexWriterConfig.OpenMode.CREATE
        config.setOpenMode(open_mode)
        if similarity is not None:
            config.setSimilarity(similarity)
        if maxBufferedDocs is not None:
            config.setMaxBufferedDocs(maxBufferedDocs)
        if mergePolicy is not None:
            config.setMergePolicy(mergePolicy)

        if directory is None:
            directory = self.directory

        return IndexWriter(directory, config)
        
    def getSearcher(self, directory=None, reader=None):
        if reader is not None:
            return IndexSearcher(reader)
        return IndexSearcher(self.getReader(directory=directory))
    
    def getReader(self, directory=None):
        if directory is None:
            directory = self.directory
        return DirectoryReader.open(directory)
Exemple #8
0
 def __init__(self, root, analyzer):
     self.store = RAMDirectory()
     self.analyzer = LimitTokenCountAnalyzer(analyzer, 1048576)
     config = IndexWriterConfig(self.analyzer)
     config.setOpenMode(IndexWriterConfig.OpenMode.CREATE)
     self.writer = IndexWriter(self.store, config)
     self.numDocs = self.indexDocs(root, self.writer)
     self.writer.commit()
     self.writer.close()
Exemple #9
0
    def __init__(self):
        indexDir = RAMDirectory()
        analyzer = SmartChineseAnalyzer()
        writerConfig = IndexWriterConfig(analyzer)

        # create new directory, remove previously indexed documents
        writerConfig.setOpenMode(IndexWriterConfig.OpenMode.CREATE)
        writerConfig.setSimilarity(mySimilarity())
        logger.debug('search similarity:{}'.format(
            writerConfig.getSimilarity()))
        self.indexDir = indexDir
        self.writer = IndexWriter(indexDir, writerConfig)
Exemple #10
0
def retrival_answer(MAX):
    lucene.initVM()
    directory = RAMDirectory()

    indexDir = SimpleFSDirectory(Paths.get('index'))
    writerConfig = IndexWriterConfig(StandardAnalyzer())
    writer = IndexWriter(directory, writerConfig)

    print "%d docs in index" % writer.numDocs()
    print "Reading lines from Document..."

    process_doc = open("Huawei_result/document.txt", "r")
    doc_line = process_doc.readlines()
    for l in doc_line:
        doc = Document()
        doc.add(TextField("text", l, Field.Store.YES))
        writer.addDocument(doc)
    print "Indexed from %d docs in index" % (writer.numDocs())
    print "Closing index of %d docs..." % writer.numDocs()
    writer.close()

    accuracy = []
    process_query = open("Huawei_result/query.txt", "r")
    query_line = process_query.readlines()
    for n, one_query in enumerate(query_line):
        analyzer = StandardAnalyzer()
        # reader = IndexReader.open(SimpleFSDirectory(Paths.get('index')))
        searcher = IndexSearcher(DirectoryReader.open(directory))
        # searcher = IndexSearcher(reader)
        query = QueryParser("text", analyzer).parse(one_query)
        hits = searcher.search(query, MAX)
        # print "Found %d document(s) that matched query '%s':" % (hits.totalHits, query)
        # print "The groundtruth document is:", doc_line[n]
        candidate_doc = []
        for hit in hits.scoreDocs:
            # print hit.score, hit.doc, hit.toString()
            doc = searcher.doc(hit.doc)
            # print doc.get("text").encode("utf-8")
            candidate_doc.append(doc.get("text"))

        choices = process.extract(unicode(doc_line[n]), candidate_doc)
        flag = 0
        for i in range(len(choices)):
            if choices[i][1] >= 89:
                flag = 1
        if flag == 1:
            accuracy.append(1)
        else:
            accuracy.append(0)

    final_accuracy = float(sum(accuracy)) / float(len(accuracy))

    print "the final accuracy is:", final_accuracy
Exemple #11
0
def create_miniindex(docs):
    index_store = RAMDirectory()
    analyzer = StandardAnalyzer()
    config = IndexWriterConfig(analyzer)
    config.setOpenMode(IndexWriterConfig.OpenMode.CREATE)
    writer = IndexWriter(index_store, config)

    for doc in docs:
        writer.addDocument(doc)

    writer.commit()
    writer.close()
    return index_store
Exemple #12
0
    def __init__(self, indexDir="", debug=False, verbose=False):
        """
        :Parameters:
        - `indexDir`: Path where the Index will be saved. (Str)
        - `debug`: Create the Index in RAM Memory (indexDir will be ignored). (Boolean)
        - `verbose`: Provide additional information about the initialization process. (Boolean)
        """
        self.__verbose = verbose
        if indexDir != "":
            INDEX_DIR = indexDir
        else:
            INDEX_DIR = os.path.dirname(
                os.path.realpath(__file__)) + "/luceneIndex"

        if not os.path.exists(INDEX_DIR):
            os.makedirs(INDEX_DIR)
            self.__boAppend = False
        else:
            self.__boAppend = True
        # Initialize lucene and JVM
        lucene.initVM()
        # Get index storage
        if debug:
            # Store the index in memory
            self.__indexDir = RAMDirectory()
            self.__boAppend = False
            INDEX_DIR = "RAM Memory"
        else:
            # Store an index on disk
            self.__indexDir = SimpleFSDirectory(Paths.get(INDEX_DIR))

        # Create Content FieldType
        self.__contentType = FieldType()
        self.__contentType.setIndexOptions(IndexOptions.DOCS_AND_FREQS)
        self.__contentType.setTokenized(True)
        self.__contentType.setStored(True)
        self.__contentType.setStoreTermVectors(True)
        self.__contentType.setStoreTermVectorPositions(True)
        self.__contentType.freeze()

        # Get the Analyzer
        self.__analyzer = StandardAnalyzer(
            StandardAnalyzer.ENGLISH_STOP_WORDS_SET)

        # Print Indexer Information
        print("Lucene version is: ", lucene.VERSION)
        print("Index Directory: ", INDEX_DIR)
Exemple #13
0
    def testTieBreaker(self):
      # MultiTermQuery provides (via attribute) information about which values
      # must be competitive to enter the priority queue. 
      #
      # FuzzyQuery optimizes itself around this information, if the attribute
      # is not implemented correctly, there will be problems!
      #
      directory = RAMDirectory()
      writer = self.getWriter(directory=directory)
      self._addDoc("a123456", writer)
      self._addDoc("c123456", writer)
      self._addDoc("d123456", writer)
      self._addDoc("e123456", writer)

      directory2 = RAMDirectory()
      writer2 = self.getWriter(directory=directory2)
      self._addDoc("a123456", writer2)
      self._addDoc("b123456", writer2)
      self._addDoc("b123456", writer2)
      self._addDoc("b123456", writer2)
      self._addDoc("c123456", writer2)
      self._addDoc("f123456", writer2)

      ir1 = writer.getReader()
      ir2 = writer2.getReader()

      mr = MultiReader([ir1, ir2])
      searcher = self.getSearcher(reader=mr)

      fq = FuzzyQuery(Term("field", "z123456"), 1, 0, 2, False)
      docs = searcher.search(fq, 2)
      self.assertEqual(5, docs.totalHits.value)  # 5 docs, from the a and b's

      mr.close()
      ir1.close()
      ir2.close()
      writer.close()
      writer2.close()
      directory.close()
      directory2.close()
Exemple #14
0
def index_and_search_sentence(list_paragraph, question):
    ramDir = RAMDirectory()
    analyzer = SmartChineseAnalyzer()
    myIndexer = SSQA_S_Indexer(ramDir, analyzer)
    try:
        sent_num = 0
        logger.info("Start indexing sentences...")
        for paragraph in tqdm(list_paragraph):
            sentences = re.split('#', paragraph)
            for sent in sentences:
                myIndexer.add(sent)
                sent_num += 1
        logger.info("Indexed {} sentences.".format(sent_num))
        myIndexer.close()
        mySearcher = SSQA_S_Searcher(ramDir, analyzer)
        ret_sents = mySearcher.search(question, 1)
        return ret_sents
        mySearcher.close()
    finally:
        myIndexer.close()
        mySearcher.close()
    def __init__(self, index_dir, use_ram=False, jvm_ram=None):
        global lucene_vm_init
        if not lucene_vm_init:
            if jvm_ram:
                # e.g. jvm_ram = "8g"
                print "Increased JVM ram"
                lucene.initVM(vmargs=['-Djava.awt.headless=true'], maxheap=jvm_ram)
            else:
                lucene.initVM(vmargs=['-Djava.awt.headless=true'])
            lucene_vm_init = True
        self.dir = SimpleFSDirectory(Paths.get(index_dir))

        self.use_ram = use_ram
        if use_ram:
            print "Using ram directory..."
            self.ram_dir = RAMDirectory(self.dir, IOContext.DEFAULT)
        self.analyzer = None
        self.reader = None
        self.searcher = None
        self.writer = None
        self.ldf = None
        print "Connected to index " + index_dir
Exemple #16
0
    def __init__(self, dest=None):
        """
        create a apache lucene indexer

        input:
            dest    destination to store index information. If not set, use
                    RAM.

        """
        # where to store information file or ram
        if dest:
            _dir = FSDirectory.open(java.io.File(dest))
        else:
            _dir = RAMDirectory()
        self.directory = _dir

        # analyser
        self.analyser = StandardAnalyzer(Version.LUCENE_CURRENT)

        # index writer
        cfg = IndexWriterConfig(Version.LUCENE_CURRENT, self.analyser)
        cfg.setDefaultWriteLockTimeout(6000)
        self.idx_writer = IndexWriter(self.directory, cfg)
Exemple #17
0
def indexer(documents_file):
    analyzer = StandardAnalyzer()
    # creating a directory on the RAM
    directory = RAMDirectory()
    config = IndexWriterConfig(analyzer)
    writer = IndexWriter(directory, config)
    # indexing the documents
    doc = Document()
    lines = documents_file.readlines()
    length = len(lines)
    for line_number in range(length):
        # indexing document ID
        if lines[line_number].startswith(".U"):
            doc_id = lines[line_number + 1].strip()
            writer.addDocument(doc)
            doc = Document()
            doc.add(Field("DocID", doc_id, TextField.TYPE_STORED))
        # indexing document description
        elif lines[line_number].startswith(".W"):
            paragraph = lines[line_number + 1].strip()
            paragraph = search.stop_words(paragraph)
            doc.add(Field("DocParagraph", paragraph, TextField.TYPE_STORED))
        # indexing document title
        elif lines[line_number].startswith(".T"):
            paragraph = lines[line_number + 1].strip()
            paragraph = search.stop_words(paragraph)
            doc.add(Field("DocParagraph", paragraph, TextField.TYPE_STORED))
        # indexing document keywords
        elif lines[line_number].startswith(".M"):
            paragraph = lines[line_number + 1].strip()
            paragraph = search.stop_words(paragraph)
            doc.add(Field("DocParagraph", paragraph, TextField.TYPE_STORED))
    writer.addDocument(doc)
    writer.close()

    return directory, analyzer
    def testTieBreaker(self):
      # MultiTermQuery provides (via attribute) information about which values
      # must be competitive to enter the priority queue. 
      #
      # FuzzyQuery optimizes itself around this information, if the attribute
      # is not implemented correctly, there will be problems!
      #
      directory = RAMDirectory()
      writer = self.getWriter(directory=directory)
      self._addDoc("a123456", writer)
      self._addDoc("c123456", writer)
      self._addDoc("d123456", writer)
      self._addDoc("e123456", writer)
    
      directory2 = RAMDirectory()
      writer2 = self.getWriter(directory=directory2)
      self._addDoc("a123456", writer2)
      self._addDoc("b123456", writer2)
      self._addDoc("b123456", writer2)
      self._addDoc("b123456", writer2)
      self._addDoc("c123456", writer2)
      self._addDoc("f123456", writer2)
    
      ir1 = writer.getReader()
      ir2 = writer2.getReader()
    
      mr = MultiReader([ir1, ir2])
      searcher = self.getSearcher(reader=mr)

      fq = FuzzyQuery(Term("field", "z123456"), 1, 0, 2, False)
      docs = searcher.search(fq, 2)
      self.assertEqual(5, docs.totalHits)  # 5 docs, from the a and b's

      mr.close()
      ir1.close()
      ir2.close()
      writer.close()
      writer2.close()
      directory.close()
      directory2.close()
Exemple #19
0
nltk.download('gutenberg')
# nltk.corpus.gutenberg.fileids()
gutenberg_list = [
    'austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt',
    'bible-kjv.txt', 'blake-poems.txt', 'bryant-stories.txt',
    'burgess-busterbrown.txt', 'carroll-alice.txt', 'chesterton-ball.txt',
    'chesterton-brown.txt', 'chesterton-thursday.txt', 'edgeworth-parents.txt',
    'melville-moby_dick.txt', 'milton-paradise.txt', 'shakespeare-caesar.txt',
    'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt'
]

lucene.initVM(vmargs=['-Djava.awt.headless=true'])
analyzer = StandardAnalyzer()

# store the index in memory
directory = RAMDirectory()

# # store the index in File System
# directory = FSDirectory()

config = IndexWriterConfig(analyzer)
iwriter = IndexWriter(directory, config)
doc = Document()
text = "This is the text to be indexed."
doc.add(Field("fieldname", text, TextField.TYPE_STORED))
iwriter.addDocument(doc)
iwriter.close()

# now search the index
ireader = DirectoryReader.open(directory)
isearcher = IndexSearcher(ireader)
    path = INPUT_DIR + file_name  # assemble the file descriptor
    file = open(path)  # open in read mode
    doc = Document()  # create a new document
    # add the title field
    doc.add(StringField("title", input_file, Field.Store.YES))
    # add the whole book
    doc.add(TextField("text", file.read(), Field.Store.YES))
    file.close()  # close the file pointer
    return doc


# Initialize lucene and the JVM
lucene.initVM()

# Create a new directory. As a SimpleFSDirectory is rather slow ...
directory = RAMDirectory()  # ... we'll use a RAMDirectory!

# Get and configure an IndexWriter
analyzer = StandardAnalyzer(Version.LUCENE_CURRENT)
analyzer = LimitTokenCountAnalyzer(analyzer, NoT)
config = IndexWriterConfig(Version.LUCENE_CURRENT, analyzer)
writer = IndexWriter(directory, config)

print "Number of indexed documents: %d\n" % writer.numDocs()
for input_file in listdir(INPUT_DIR):  # iterate over all input files
    print "Current file:", input_file
    if input_file.endswith(".txt"):  # consider only .txt files
        doc = create_document(input_file)  # call the create_document function
        writer.addDocument(doc)  # add the document to the IndexWriter

print "\nNumber of indexed documents: %d" % writer.numDocs()
Exemple #21
0
                tweets.append(tweet)
    except:
        continue

for tweet in tweets:
    ids = [tweet['id_str'] for tweet in tweets if 'id_str' in tweet]
    text = [tweet['text'] for tweet in tweets if 'text' in tweet]
    lang = [tweet['lang'] for tweet in tweets if 'lang' in tweet]
    geo = [tweet['geo'] for tweet in tweets if 'geo' in tweet]
    place = [tweet['place'] for tweet in tweets if 'place' in tweet]
    print(ids, text, lang, geo, place)

tweet_dict = {
    "ids": ids,
    "text": text,
    "lang": lang,
    "geo": geo,
    "place": place
}
lucene.initVM(vmargs=['-Djava.awt.headless=true'])
index = Document()
for i in list(tweet_dict):
    index.add(Field(i, tweet_dict[i], StringField.TYPE_STORED))
index_config = IndexWriterConfig(StandardAnalyzer())
index_direc = RAMDirectory()
#currently the index is being saved on RAM, saving on disk is possible as well.
index_writer = IndexWriter(index_direc, index_config)
index_writer.addDocument(index)
index_writer.commit()
index_writer.close()
 def __init__(self):
     self.num_doc = 0
     self.directory = RAMDirectory()
     self.analyzer = StandardAnalyzer(Version.LUCENE_CURRENT)
     self.config = IndexWriterConfig(Version.LUCENE_CURRENT, self.analyzer)
     self.writer = IndexWriter(self.directory, self.config)
## Java imports:
from org.apache.lucene.search.spell import PlainTextDictionary, SpellChecker
# boilerplate for setting up spellchecking:
from java.io import StringReader
from org.apache.lucene.store import RAMDirectory
from org.apache.lucene.index import IndexWriterConfig
from org.apache.lucene.analysis.core import KeywordAnalyzer

# Start JVM for Lucene.
lucene.initVM()

# Set up Lucene spellchecking.
dict_reader = StringReader(dict_str)
dictionary = PlainTextDictionary(dict_reader)

ramdir = RAMDirectory()
spellchecker = SpellChecker(ramdir)
spellchecker.indexDictionary(dictionary, IndexWriterConfig(KeywordAnalyzer()),
                             True)


# Run the word correction test.
def correct_word(word):
    candidates = spellchecker.suggestSimilar(word, 10)
    if len(candidates) > 0:
        return candidates[0]
    else:
        return ''


good, bad = [], []
Exemple #24
0
 def __init__(_self, minR, maxR, allowNegativeRandomInts):
     _self.minR = minR
     _self.maxR = maxR
     _self.allowNegativeRandomInts = allowNegativeRandomInts
     _self.index = RAMDirectory()
 def setUp(self):
     self.directory = RAMDirectory()
Exemple #26
0
 def setUp(self):
     self.directory = RAMDirectory()