def create_test_performance_estimators(self):
     performance_estimators = PerformanceList()
     performance_estimators += [LossHelper("test_supervised_loss")]
     performance_estimators += [AccuracyHelper("test_")]
     performance_estimators += [LossHelper("test_encoded_supervised_loss")]
     performance_estimators += [AccuracyHelper("test_encoded_")]
     self.test_performance_estimators = performance_estimators
     return performance_estimators
 def create_test_performance_estimators(self):
     performance_estimators = PerformanceList()
     performance_estimators += [FloatHelper("reconstruction_loss")]
     performance_estimators += [LossHelper("test_loss")]
     performance_estimators += [AccuracyHelper("test_")]
     performance_estimators += [FloatHelper("weight")]
     self.test_performance_estimators = performance_estimators
     return performance_estimators
Exemple #3
0
    def test_semi_sup(self, epoch):
        print('\nTesting, epoch: %d' % epoch)

        performance_estimators = PerformanceList()
        performance_estimators += [LossHelper("test_supervised_loss")]
        performance_estimators += [LossHelper("test_reconstruction_loss")]
        performance_estimators += [AccuracyHelper("test_")]

        self.net.eval()
        for performance_estimator in performance_estimators:
            performance_estimator.init_performance_metrics()
        validation_loader_subset = self.problem.validation_loader_range(0, self.args.num_validation)
        data_provider = MultiThreadedCpuGpuDataProvider(iterator=zip(validation_loader_subset), is_cuda=self.use_cuda,
                                                        batch_names=["validation"],
                                                        requires_grad={"validation": []},
                                                        volatile={"validation": ["input", "softmaxGenotype"]})
        try:
            for batch_idx, (_, data_dict) in enumerate(data_provider):
                input_s = data_dict["validation"]["input"]
                target_s = data_dict["validation"]["softmaxGenotype"]
                # we need copies of the same tensors:
                input_u, target_u = Variable(input_s.data, volatile=True), Variable(input_s.data, volatile=True)

                output_s = self.net(input_s)
                output_u = self.net.autoencoder(input_u)
                output_s_p = self.get_p(output_s)

                _, target_index = torch.max(target_s, dim=1)

                supervised_loss = self.criterion_classifier(output_s, target_s)
                reconstruction_loss = self.criterion_autoencoder(output_u, target_u)

                performance_estimators.set_metric(batch_idx, "test_supervised_loss", supervised_loss.data[0])
                performance_estimators.set_metric(batch_idx, "test_reconstruction_loss", reconstruction_loss.data[0])
                performance_estimators.set_metric_with_outputs(batch_idx, "test_accuracy", supervised_loss.data[0],
                                                               output_s_p, targets=target_index)

                progress_bar(batch_idx * self.mini_batch_size, self.max_validation_examples,
                             performance_estimators.progress_message(["test_supervised_loss", "test_reconstruction_loss",
                                                                      "test_accuracy"]))

                if ((batch_idx + 1) * self.mini_batch_size) > self.max_validation_examples:
                    break
            # print()
        finally:
            data_provider.close()
        test_metric = performance_estimators.get_metric(self.get_test_metric_name())
        assert test_metric is not None, self.get_test_metric_name() + "must be found among estimated performance metrics"
        if not self.args.constant_learning_rates:
            self.scheduler_train.step(test_metric, epoch)
        return performance_estimators
Exemple #4
0
    def train_supervised(self, epoch):
        performance_estimators = PerformanceList()
        performance_estimators += [FloatHelper("supervised_loss")]
        performance_estimators += [AccuracyHelper("train_")]
        if self.use_cuda:
            self.tensor_cache.cuda()
        print('\nTraining, epoch: %d' % epoch)

        for performance_estimator in performance_estimators:
            performance_estimator.init_performance_metrics()

        unsupervised_loss_acc = 0
        num_batches = 0
        train_loader_subset = self.problem.train_loader_subset_range(
            0, self.args.num_training)
        data_provider = MultiThreadedCpuGpuDataProvider(
            iterator=zip(train_loader_subset),
            is_cuda=self.use_cuda,
            batch_names=["training"],
            requires_grad={"training": ["sbi"]},
            volatile={"training": ["metaData"]},
            recode_functions={
                "softmaxGenotype":
                lambda x: recode_for_label_smoothing(x, self.epsilon),
            })
        cudnn.benchmark = False
        try:

            for batch_idx, (_, data_dict) in enumerate(data_provider):
                sbi = data_dict["training"]["sbi"]
                target_s = data_dict["training"]["softmaxGenotype"]
                metadata = data_dict["training"]["metaData"]

                self.train_one_batch(performance_estimators, batch_idx, sbi,
                                     target_s, metadata)
                if (batch_idx +
                        1) * self.mini_batch_size > self.max_training_examples:
                    break
        finally:
            data_provider.close()

        return performance_estimators
 def create_training_performance_estimators(self):
     performance_estimators = PerformanceList()
     performance_estimators += [FloatHelper("supervised_loss")]
     performance_estimators += [AccuracyHelper("train_")]
     self.training_performance_estimators = performance_estimators
     return performance_estimators
Exemple #6
0
    def train_semisup(self, epoch):
        performance_estimators = PerformanceList()
        performance_estimators += [FloatHelper("optimized_loss")]
        performance_estimators += [FloatHelper("supervised_loss")]
        performance_estimators += [FloatHelper("reconstruction_loss")]
        performance_estimators += [AccuracyHelper("train_")]

        print('\nTraining, epoch: %d' % epoch)

        self.net.train()

        for performance_estimator in performance_estimators:
            performance_estimator.init_performance_metrics()

        unsupervised_loss_acc = 0
        num_batches = 0
        train_loader_subset = self.problem.train_loader_subset_range(0, self.args.num_training)
        unlabeled_loader = self.problem.unlabeled_loader()
        data_provider = MultiThreadedCpuGpuDataProvider(iterator=zip(train_loader_subset, unlabeled_loader),is_cuda=self.use_cuda,
                                     batch_names=["training", "unlabeled"],
                                     requires_grad={"training": ["input"], "unlabeled": ["input"]},
                                     volatile={"training": ["metaData"], "unlabeled": []},
                                     recode_functions={"softmaxGenotype": lambda x: recode_for_label_smoothing(x,self.epsilon)})
        self.net.autoencoder.train()
        try:
            for batch_idx, (_, data_dict) in enumerate(data_provider):
                input_s = data_dict["training"]["input"]
                metadata = data_dict["training"]["metaData"]
                target_s = data_dict["training"]["softmaxGenotype"]
                input_u = data_dict["unlabeled"]["input"]
                num_batches += 1

                # need a copy of input_u and input_s as output:
                target_u = Variable(input_u.data, requires_grad=False)
                target_output_s = Variable(input_s.data, requires_grad=False)
                # outputs used to calculate the loss of the supervised model
                # must be done with the model prior to regularization:

                # Zero gradients:
                self.net.zero_grad()
                self.net.autoencoder.zero_grad()
                self.optimizer_training.zero_grad()

                output_s = self.net(input_s)
                output_u = self.net.autoencoder(input_u)
                input_output_s = self.net.autoencoder(input_s)
                output_s_p = self.get_p(output_s)

                _, target_index = torch.max(target_s, dim=1)
                supervised_loss = self.criterion_classifier(output_s, target_s)
                reconstruction_loss_unsup = self.criterion_autoencoder(output_u, target_u)
                reconstruction_loss_sup = self.criterion_autoencoder(input_output_s, target_output_s)
                reconstruction_loss = self.args.gamma * reconstruction_loss_unsup+reconstruction_loss_sup
                optimized_loss = supervised_loss + reconstruction_loss
                optimized_loss.backward()
                self.optimizer_training.step()
                performance_estimators.set_metric(batch_idx, "supervised_loss", supervised_loss.data[0])
                performance_estimators.set_metric(batch_idx, "reconstruction_loss", reconstruction_loss.data[0])
                performance_estimators.set_metric(batch_idx, "optimized_loss", optimized_loss.data[0])
                performance_estimators.set_metric_with_outputs(batch_idx, "train_accuracy", supervised_loss.data[0],
                                                               output_s_p, targets=target_index)

                progress_bar(batch_idx * self.mini_batch_size,
                             self.max_training_examples,
                             performance_estimators.progress_message(["supervised_loss", "reconstruction_loss",
                                                                      "train_accuracy"]))

                if (batch_idx + 1) * self.mini_batch_size > self.max_training_examples:
                    break
        finally:
            data_provider.close()

        return performance_estimators
Exemple #7
0
    def test_semisup_aae(self, epoch, performance_estimators=None):
        print('\nTesting, epoch: %d' % epoch)
        if performance_estimators is None:
            performance_estimators = PerformanceList()
            performance_estimators += [FloatHelper("reconstruction_loss")]
            performance_estimators += [LossHelper("test_loss")]
            performance_estimators += [AccuracyHelper("test_")]
            performance_estimators += [FloatHelper("weight")]

        self.net.eval()
        for performance_estimator in performance_estimators:
            performance_estimator.init_performance_metrics()
        validation_loader_subset = self.problem.validation_loader_range(
            0, self.args.num_validation)
        data_provider = MultiThreadedCpuGpuDataProvider(
            iterator=zip(validation_loader_subset),
            is_cuda=self.use_cuda,
            batch_names=["validation"],
            requires_grad={"validation": []},
            volatile={
                "validation": ["input", "softmaxGenotype"],
            },
            recode_functions={"input": self.normalize_inputs})
        self.net.eval()
        try:
            for batch_idx, (_, data_dict) in enumerate(data_provider):
                input_s = data_dict["validation"]["input"]
                target_s = data_dict["validation"]["softmaxGenotype"]

                # Estimate the reconstruction loss on validation examples:
                reconstruction_loss = self.net.get_crossconstruction_loss(
                    input_s, input_s, target_s)

                # now evaluate prediction of categories:
                categories_predicted, latent_code = self.net.encoder(input_s)
                #            categories_predicted+=self.net.latent_to_categories(latent_code)

                categories_predicted_p = self.get_p(categories_predicted)
                categories_predicted_p[
                    categories_predicted_p != categories_predicted_p] = 0.0
                _, target_index = torch.max(target_s, dim=1)
                categories_loss = self.net.semisup_loss_criterion(
                    categories_predicted, target_s)

                weight = self.estimate_example_density_weight(latent_code)
                performance_estimators.set_metric(batch_idx,
                                                  "reconstruction_loss",
                                                  reconstruction_loss.data[0])
                performance_estimators.set_metric(batch_idx, "weight", weight)
                performance_estimators.set_metric_with_outputs(
                    batch_idx, "test_accuracy", reconstruction_loss.data[0],
                    categories_predicted_p, target_index)
                performance_estimators.set_metric_with_outputs(
                    batch_idx, "test_loss", categories_loss.data[0] * weight,
                    categories_predicted_p, target_s)

                if not self.args.no_progress:
                    progress_bar(
                        batch_idx * self.mini_batch_size,
                        self.max_validation_examples,
                        performance_estimators.progress_message([
                            "test_loss", "test_accuracy", "reconstruction_loss"
                        ]))

                if ((batch_idx + 1) *
                        self.mini_batch_size) > self.max_validation_examples:
                    break
            # print()
        finally:
            data_provider.close()
        # Apply learning rate schedules:
        test_metric = performance_estimators.get_metric(
            self.get_test_metric_name())
        assert test_metric is not None, (
            self.get_test_metric_name() +
            "must be found among estimated performance metrics")
        if not self.args.constant_learning_rates:
            for scheduler in self.schedulers:
                scheduler.step(test_metric, epoch)
        # Run the garbage collector to try to release memory we no longer need:
        import gc
        gc.collect()
        return performance_estimators