def findpath(self, points, curvature=1.0): """Constructs a path between the given list of points. Interpolates the list of points and determines a smooth bezier path betweem them. The curvature parameter offers some control on how separate segments are stitched together: from straight angles to smooth curves. Curvature is only useful if the path has more than three points. """ # The list of points consists of Point objects, # but it shouldn't crash on something straightforward # as someone supplying a list of (x,y)-tuples. for i, pt in enumerate(points): if type(pt) == TupleType: points[i] = Point(pt[0], pt[1]) if len(points) == 0: return None if len(points) == 1: path = self.BezierPath(None) path.moveto(points[0].x, points[0].y) return path if len(points) == 2: path = self.BezierPath(None) path.moveto(points[0].x, points[0].y) path.lineto(points[1].x, points[1].y) return path # Zero curvature means straight lines. curvature = max(0, min(1, curvature)) if curvature == 0: path = self.BezierPath(None) path.moveto(points[0].x, points[0].y) for i in range(len(points)): path.lineto(points[i].x, points[i].y) return path curvature = 4 + (1.0 - curvature) * 40 dx = {0: 0, len(points) - 1: 0} dy = {0: 0, len(points) - 1: 0} bi = {1: -0.25} ax = {1: (points[2].x - points[0].x - dx[0]) / 4} ay = {1: (points[2].y - points[0].y - dy[0]) / 4} for i in range(2, len(points) - 1): bi[i] = -1 / (curvature + bi[i - 1]) ax[i] = -(points[i + 1].x - points[i - 1].x - ax[i - 1]) * bi[i] ay[i] = -(points[i + 1].y - points[i - 1].y - ay[i - 1]) * bi[i] r = range(1, len(points) - 1) r.reverse() for i in r: dx[i] = ax[i] + dx[i + 1] * bi[i] dy[i] = ay[i] + dy[i + 1] * bi[i] path = self.BezierPath(None) path.moveto(points[0].x, points[0].y) for i in range(len(points) - 1): path.curveto(points[i].x + dx[i], points[i].y + dy[i], points[i + 1].x - dx[i + 1], points[i + 1].y - dy[i + 1], points[i + 1].x, points[i + 1].y) return path
def findpath(self, points, curvature=1.0): """Constructs a path between the given list of points. Interpolates the list of points and determines a smooth bezier path betweem them. The curvature parameter offers some control on how separate segments are stitched together: from straight angles to smooth curves. Curvature is only useful if the path has more than three points. """ # The list of points consists of Point objects, # but it shouldn't crash on something straightforward # as someone supplying a list of (x,y)-tuples. for i, pt in enumerate(points): if type(pt) == TupleType: points[i] = Point(pt[0], pt[1]) if len(points) == 0: return None if len(points) == 1: path = self.BezierPath(None) path.moveto(points[0].x, points[0].y) return path if len(points) == 2: path = self.BezierPath(None) path.moveto(points[0].x, points[0].y) path.lineto(points[1].x, points[1].y) return path # Zero curvature means straight lines. curvature = max(0, min(1, curvature)) if curvature == 0: path = self.BezierPath(None) path.moveto(points[0].x, points[0].y) for i in range(len(points)): path.lineto(points[i].x, points[i].y) return path curvature = 4 + (1.0-curvature)*40 dx = {0: 0, len(points)-1: 0} dy = {0: 0, len(points)-1: 0} bi = {1: -0.25} ax = {1: (points[2].x-points[0].x-dx[0]) / 4} ay = {1: (points[2].y-points[0].y-dy[0]) / 4} for i in range(2, len(points)-1): bi[i] = -1 / (curvature + bi[i-1]) ax[i] = -(points[i+1].x-points[i-1].x-ax[i-1]) * bi[i] ay[i] = -(points[i+1].y-points[i-1].y-ay[i-1]) * bi[i] r = range(1, len(points)-1) r.reverse() for i in r: dx[i] = ax[i] + dx[i+1] * bi[i] dy[i] = ay[i] + dy[i+1] * bi[i] path = self.BezierPath(None) path.moveto(points[0].x, points[0].y) for i in range(len(points)-1): path.curveto(points[i].x + dx[i], points[i].y + dy[i], points[i+1].x - dx[i+1], points[i+1].y - dy[i+1], points[i+1].x, points[i+1].y) return path