def clock(x): ''' allow user set the alarm in hour,min,sec ''' if x == "1": set_alarm = int(input("Set your alarm in hours: ")) t = set_alarm * 60 * 60 alarm(t) elif x == "2": set_alarm = int(input("Set your alarm in mintues: ")) t = set_alarm * 60 alarm(t) elif x == "3": set_alarm = int(input("Set your alarm in seconds: ")) t = set_alarm alarm(t) elif x == "4": h = int(input("Set your alarm in hours: ")) m = int(input("Set your alarm in mintues: ")) s = int(input("Set your alarm in seconds: ")) t = h * 60 * 60 + m * 60 + s print(f"Your alarm: {h}:{m}:{s}") alarm(t) else: try: os.system("cls") # clear output for windows main() except: os.systme("clear") # clear output for linux or mac main()
try: fileName = fullWorkspacesDir +\ "/workspace__analytic__%s__%s__%s__%s__%s.root" % ( category, wargs["mass"], wargs["bmodel"], wargs["smode"], wargs["smodel"]) wsFile = R.TFile(fileName, "UPDATE") ws = wsFile.Get("higgs") # this will raise if there is no ws print ws.allPdfs().contentsString() appending = True testModelName = getattr(models, wargs["bmodel"])(category=category, processName="VBF").getModelName() if testModelName in ws.allPdfs().contentsString(): print "Duplicates are already present! Removing the file!" wsFile.Close() os.systme("rm %s" % fileName) ws = R.RooWorkspace("higgs") appending = False models.createVariables_Mass(ws, **wargs) ws.defineSet("obs", "x") except: ws = R.RooWorkspace("higgs") appending = False models.createVariables_Mass(ws, **wargs) ws.defineSet("obs", "x") R.RooMsgService.instance().setGlobalKillBelow(R.RooFit.FATAL) obs = ws.set("obs") # # Data RooDataHist creation and preserving in Workspace #
import os import sys import numpy as np assay_all = ['M01', 'M02', 'M16', 'M17', 'M18', 'M20', 'M22', 'M29'] # prepare a wig header file # 1. prepare the converted wig files os.systme('python convert_bigwig_into_wig.py') # 2. Global distance between datasets os.system( 'java -mx4000M -jar ChromImpute.jar ComputeGlobalDist CHALLENGE/CONVERTEDDATADIR table_train_vali.txt grch38sizes.txt CHALLENGE/DISTANCEDIR' ) ## with a=10, b=20 # 3. Generate the features the_command = '' for the_assay in assay_all: the_command += 'java -mx4000M -jar ChromImpute.jar GenerateTrainData -a 10 -b 20 -d 0 CHALLENGE/CONVERTEDDATADIR CHALLENGE/DISTANCEDIR table_train_vali.txt grch38sizes.txt CHALLENGE/TRAINDATA1 ' + the_assay + ' &\n' the_command += 'wait' os.system(the_command) id_all = np.loadtxt('list_final.txt', dtype='str') # 4. Generate the trained predictors for a specific mark in a specific sample type to be predicted num_test = len(id_all) num_parallel = 17 for aaa in np.arange(int(np.ceil(num_test / num_parallel))): start = num_parallel * aaa end = np.min((num_test, num_parallel * (aaa + 1)))
try: fileName = fullWorkspacesDir +\ "/workspace__analytic__%s__%s__%s__%s__%s.root" % ( category, wargs["mass"], wargs["bmodel"], wargs["smode"], wargs["smodel"]) wsFile = R.TFile(fileName, "UPDATE") ws = wsFile.Get("higgs") # this will raise if there is no ws print ws.allPdfs().contentsString() appending = True testModelName = getattr(models, wargs["bmodel"])( category=category, processName="VBF").getModelName() if testModelName in ws.allPdfs().contentsString(): print "Duplicates are already present! Removing the file!" wsFile.Close() os.systme("rm %s" % fileName) ws = R.RooWorkspace("higgs") appending = False models.createVariables_Mass(ws, **wargs) ws.defineSet("obs", "x") except: ws = R.RooWorkspace("higgs") appending = False models.createVariables_Mass(ws, **wargs) ws.defineSet("obs", "x") R.RooMsgService.instance().setGlobalKillBelow(R.RooFit.FATAL) obs = ws.set("obs") # # Data RooDataHist creation and preserving in Workspace #
import os try: while True: print(" FUS RO DA!!") os.system('cls') except KeyboardInterrupt: os.systme("Pause")
sock.send('1') time.sleep(0.005) sock.send('9') os.system(default) elif (why == '2'): os.system(cmd2) while (why == '2'): why = ser.readline(1) sock.send('2') time.sleep(0.005) sock.send('9') os.system(default) elif (why == '3'): os.system(smile) while (why == '3'): why = ser.readline(1) sock.send('3') time.sleep(0.005) sock.send('9') os.system(default) elif (why == '4'): sock.send('4') os.system(kill) if (sock.recv == '8'): os.system("python sms.py") os.systme("feh -F --auto-zoom img/4.png &")
# Subprocess is a library for creating child processes # Those processes will execute anything we'd like # A similar more simple way to do that is with os.system, however we have not much control with that # With subprocess we can control where the stdout and stderr goes and control the process itself import os import subprocess rc = os.systme("exec_path") # We can simplay use subprocess in the following manner # This will block until the binary ends # Note that we can pass shell=True if we want the binary to open up on a new shell rc = subprocess.call(['df', '-h']) # We can control where the output goes with opening a subprocess but not blocking # And telling where to output the stdout and stderr # In this example we are only piping the stdout into our program # The stderr will be printed into the screen and None will return to us # Lastly, we can do the same for stdin and pipe data to the process p = subprocess.Popen(["echo", "hello world"], stdout=subprocess.PIPE) # The communicate returns a tuple of (stdout, stderr) and blocks the program data = p.communicate() print(data[0]) # stdout print(data[1]) # stderr # We can access the return code straight out p.returncode # We can use this to pipe one process to another: # In this example we are opening an rst file and getting all the included files from it cat = subprocess.Popen(['cat', 'index.rst'], stdout=subprocess.PIPE) grep = subprocess.Popen(