def createMovingModel(center, radius):
    animationLength = 10.0
    animationPath = createAnimationPath(center,radius,animationLength)
    model = osg.Group()
    glider = osgDB.readNodeFile("glider.osgt")
    if glider :
        bs = glider.getBound()
        size = radius/bs.radius()*0.3
        positioned = osg.MatrixTransform()
        positioned.setDataVariance(osg.Object.STATIC)
        positioned.setMatrix(osg.Matrix.translate(-bs.center())*
                                     osg.Matrix.scale(size,size,size)*
                                     osg.Matrix.rotate(osg.inDegrees(-90.0),0.0,0.0,1.0))
        positioned.addChild(glider)
        xform = osg.PositionAttitudeTransform()
        xform.setUpdateCallback(osg.AnimationPathCallback(animationPath,0.0,1.0))
        xform.addChild(positioned)
        model.addChild(xform)
    cessna = osgDB.readNodeFile("cessna.osgt")
    if cessna :
        bs = cessna.getBound()
        size = radius/bs.radius()*0.3
        positioned = osg.MatrixTransform()
        positioned.setDataVariance(osg.Object.STATIC)
        positioned.setMatrix(osg.Matrix.translate(-bs.center())*
                                     osg.Matrix.scale(size,size,size)*
                                     osg.Matrix.rotate(osg.inDegrees(180.0),0.0,0.0,1.0))
        positioned.addChild(cessna)
        xform = osg.MatrixTransform()
        xform.setUpdateCallback(osg.AnimationPathCallback(animationPath,0.0,2.0))
        xform.addChild(positioned)
        model.addChild(xform)
    return model
Exemple #2
0
def _create_scene():


    
  scene = Group()
  geode_1 = Geode()
  scene.addChild(geode_1)

  geode_2 = Geode()
  transform_2 = MatrixTransform()
  transform_2.addChild(geode_2)
  transform_2.setUpdateCallback(osg.AnimationPathCallback(Vec3(0, 0, 0), Y_AXIS, inDegrees(45.0)))
  scene.addChild(transform_2)

  geode_3 = Geode()
  transform_3 = MatrixTransform()
  transform_3.addChild(geode_3)
  transform_3.setUpdateCallback(osg.AnimationPathCallback(Vec3(0, 0, 0), Y_AXIS, inDegrees(-22.5)))
  scene.addChild(transform_3)

  radius = 0.8
  height = 1.0
  hints = TessellationHints()
  hints.setDetailRatio(2.0)
  shape = ref_ptr<ShapeDrawable>()

  shape = ShapeDrawable(Box(Vec3(0.0, -2.0, 0.0), 10, 0.1, 10), hints)
  shape.setColor(Vec4(0.5, 0.5, 0.7, 1.0))
  geode_1.addDrawable(shape)


  shape = ShapeDrawable(Sphere(Vec3(-3.0, 0.0, 0.0), radius), hints)
  shape.setColor(Vec4(0.6, 0.8, 0.8, 1.0))
  geode_2.addDrawable(shape)

  shape = ShapeDrawable(Box(Vec3(3.0, 0.0, 0.0), 2 * radius), hints)
  shape.setColor(Vec4(0.4, 0.9, 0.3, 1.0))
  geode_2.addDrawable(shape)

  shape = ShapeDrawable(Cone(Vec3(0.0, 0.0, -3.0), radius, height), hints)
  shape.setColor(Vec4(0.2, 0.5, 0.7, 1.0))
  geode_2.addDrawable(shape)

  shape = ShapeDrawable(Cylinder(Vec3(0.0, 0.0, 3.0), radius, height), hints)
  shape.setColor(Vec4(1.0, 0.3, 0.3, 1.0))
  geode_2.addDrawable(shape)

  shape = ShapeDrawable(Box(Vec3(0.0, 3.0, 0.0), 2, 0.1, 2), hints)
  shape.setColor(Vec4(0.8, 0.8, 0.4, 1.0))
  geode_3.addDrawable(shape)

  # material
  matirial = Material()
  matirial.setColorMode(Material.DIFFUSE)
  matirial.setAmbient(Material.FRONT_AND_BACK, Vec4(0, 0, 0, 1))
  matirial.setSpecular(Material.FRONT_AND_BACK, Vec4(1, 1, 1, 1))
  matirial.setShininess(Material.FRONT_AND_BACK, 64.0)
  scene.getOrCreateStateSet().setAttributeAndModes(matirial, StateAttribute.ON)

  return scene
Exemple #3
0
def createLights(bb, rootStateSet):


    
    lightGroup = osg.Group()

    modelSize = bb.radius()

    # create a spot light.
    myLight1 = osg.Light()
    myLight1.setLightNum(0)
    myLight1.setPosition(osg.Vec4(bb.corner(4),1.0))
    myLight1.setAmbient(osg.Vec4(1.0,0.0,0.0,1.0))
    myLight1.setDiffuse(osg.Vec4(1.0,0.0,0.0,1.0))
    myLight1.setSpotCutoff(20.0)
    myLight1.setSpotExponent(50.0)
    myLight1.setDirection(osg.Vec3(1.0,1.0,-1.0))

    lightS1 = osg.LightSource()
    lightS1.setLight(myLight1)
    lightS1.setLocalStateSetModes(osg.StateAttribute.ON)

    lightS1.setStateSetModes(*rootStateSet,osg.StateAttribute.ON)
    lightGroup.addChild(lightS1)


    # create a local light.
    myLight2 = osg.Light()
    myLight2.setLightNum(1)
    myLight2.setPosition(osg.Vec4(0.0,0.0,0.0,1.0))
    myLight2.setAmbient(osg.Vec4(0.0,1.0,1.0,1.0))
    myLight2.setDiffuse(osg.Vec4(0.0,1.0,1.0,1.0))
    myLight2.setConstantAttenuation(1.0)
    myLight2.setLinearAttenuation(2.0/modelSize)
    myLight2.setQuadraticAttenuation(2.0/osg.square(modelSize))

    lightS2 = osg.LightSource()
    lightS2.setLight(myLight2)
    lightS2.setLocalStateSetModes(osg.StateAttribute.ON)

    lightS2.setStateSetModes(*rootStateSet,osg.StateAttribute.ON)

    mt = osg.MatrixTransform()
        # set up the animation path
        animationPath = osg.AnimationPath()
        animationPath.insert(0.0,osg.AnimationPath.ControlPoint(bb.corner(0)))
        animationPath.insert(1.0,osg.AnimationPath.ControlPoint(bb.corner(1)))
        animationPath.insert(2.0,osg.AnimationPath.ControlPoint(bb.corner(2)))
        animationPath.insert(3.0,osg.AnimationPath.ControlPoint(bb.corner(3)))
        animationPath.insert(4.0,osg.AnimationPath.ControlPoint(bb.corner(4)))
        animationPath.insert(5.0,osg.AnimationPath.ControlPoint(bb.corner(5)))
        animationPath.insert(6.0,osg.AnimationPath.ControlPoint(bb.corner(6)))
        animationPath.insert(7.0,osg.AnimationPath.ControlPoint(bb.corner(7)))
        animationPath.insert(8.0,osg.AnimationPath.ControlPoint(bb.corner(0)))
        animationPath.setLoopMode(osg.AnimationPath.SWING)

        mt.setUpdateCallback(osg.AnimationPathCallback(animationPath))
Exemple #4
0
def main(argv):
    
    # use an ArgumentParser object to manage the program arguments.
    arguments = osg.ArgumentParser(argv)

    # construct the viewer.
    viewer = osgViewer.Viewer()

    # read the scene from the list of file specified commandline args.
    loadedModel = osgDB.readNodeFiles(arguments)

    # if not loaded assume no arguments passed in, try use default mode instead.
    if  not loadedModel : loadedModel = osgDB.readNodeFile("cessna.osgt")

    # if no model has been successfully loaded report failure.
    if  not loadedModel :
        print arguments.getApplicationName(), ": No data loaded"
        return 1


    # optimize the scene graph, remove redundant nodes and state etc.
    optimizer = osgUtil.Optimizer()
    optimizer.optimize(loadedModel)

    # add a transform with a callback to animate the loaded model.
    loadedModelTransform = osg.MatrixTransform()
    loadedModelTransform.addChild(loadedModel)

    nc = osg.AnimationPathCallback(loadedModelTransform.getBound().center(),osg.Vec3(0.0,0.0,1.0),osg.inDegrees(45.0))
    loadedModelTransform.setUpdateCallback(nc)


    # finally decorate the loaded model so that it has the required multipass/bin scene graph to do the reflection effect.
    rootNode = createMirroredScene(loadedModelTransform)

    # set the scene to render
    viewer.setSceneData(rootNode)

    # hint to tell viewer to request stencil buffer when setting up windows
    osg.DisplaySettings.instance().setMinimumNumStencilBits(8)

    #osgDB.writeNodeFile(*rootNode, "test.osgt")

    return viewer.run()
Exemple #5
0
def decorate_with_clip_node(subgraph):

    rootnode = osg.Group()

    # create wireframe view of the model so the user can see
    # what parts are being culled away.
    stateset = osg.StateSet()
    #osg.Material* material = osg.Material()
    polymode = osg.PolygonMode()
    polymode.setMode(osg.PolygonMode.FRONT_AND_BACK, osg.PolygonMode.LINE)
    stateset.setAttributeAndModes(
        polymode, osg.StateAttribute.OVERRIDE | osg.StateAttribute.ON)

    wireframe_subgraph = osg.Group()
    wireframe_subgraph.setStateSet(stateset)
    wireframe_subgraph.addChild(subgraph)
    rootnode.addChild(wireframe_subgraph)

    #
    #    # simple approach to adding a clipnode above a subrgaph.
    #
    #    # create clipped part.
    #    clipped_subgraph = osg.ClipNode()
    #
    #    bs = subgraph.getBound()
    #    bs.radius()*= 0.4
    #
    #    bb = osg.BoundingBox()
    #    bb.expandBy(bs)
    #
    #
    #    clipped_subgraph.createClipBox(bb)
    #    clipped_subgraph.addChild(subgraph)
    #    rootnode.addChild(clipped_subgraph)
    #

    # more complex approach to managing ClipNode, allowing
    # ClipNode node to be transformed independantly from the subgraph
    # that it is clipping.

    transform = osg.MatrixTransform()

    nc = osg.AnimationPathCallback(subgraph.getBound().center(),
                                   osg.Vec3(0.0, 0.0, 1.0),
                                   osg.inDegrees(45.0))
    transform.setUpdateCallback(nc)

    clipnode = osg.ClipNode()
    bs = subgraph.getBound()
    bs.radius() *= 0.4

    bb = osg.BoundingBox()
    bb.expandBy(bs)

    clipnode.createClipBox(bb)
    clipnode.setCullingActive(False)

    transform.addChild(clipnode)
    rootnode.addChild(transform)

    # create clipped part.
    clipped_subgraph = osg.Group()

    clipped_subgraph.setStateSet(clipnode.getStateSet())
    clipped_subgraph.addChild(subgraph)
    rootnode.addChild(clipped_subgraph)

    return rootnode
Exemple #6
0
        traverse(node)

    typedef std.vector< osg.Node > NodeList

    _name = str()
    _foundNodes = NodeList()



osg.MatrixTransform* SolarSystem.createRotation( double orbit, double speed )
    center = osg.Vec3( 0.0, 0.0, 0.0 )
    animationLength = 10.0
    animationPath = createAnimationPath( center, orbit, animationLength )

    rotation = osg.MatrixTransform()
    rotation.setUpdateCallback( osg.AnimationPathCallback( animationPath, 0.0, speed ) )

    return rotation
# end SolarSystem.createEarthRotation


osg.MatrixTransform* SolarSystem.createTranslationAndTilt( double #translation, double tilt )
    moonPositioned = osg.MatrixTransform()
    moonPositioned.setMatrix(osg.Matrix.translate(osg.Vec3( 0.0, _RorbitMoon, 0.0 ) )*
                                 osg.Matrix.scale(1.0, 1.0, 1.0)*
                                 osg.Matrix.rotate(osg.inDegrees( tilt ),0.0,0.0,1.0))

    return moonPositioned
# end SolarSystem.createTranslationAndTilt

Exemple #7
0
def main(argv):


    
    # use an ArgumentParser object to manage the program arguments.
    arguments = osg.ArgumentParser(argv)
    
    # set up the usage document, in case we need to print out how to use this program.
    arguments.getApplicationUsage().setDescription(arguments.getApplicationName()+" is the example which demonstrates use of node tracker.")
    arguments.getApplicationUsage().setCommandLineUsage(arguments.getApplicationName())
    arguments.getApplicationUsage().addCommandLineOption("-h or --help","Display this information")
    

    # construct the viewer.
    viewer = osgViewer.Viewer(arguments)

    # add the state manipulator
    viewer.addEventHandler( osgGA.StateSetManipulator(viewer.getCamera().getOrCreateStateSet()) )
    
    # add the thread model handler
    viewer.addEventHandler(osgViewer.ThreadingHandler)()

    # add the window size toggle handler
    viewer.addEventHandler(osgViewer.WindowSizeHandler)()
        
    # add the stats handler
    viewer.addEventHandler(osgViewer.StatsHandler)()
        
    # add the record camera path  handler
    viewer.addEventHandler(osgViewer.RecordCameraPathHandler)()

    # add the help handler
    viewer.addEventHandler(osgViewer.HelpHandler(arguments.getApplicationUsage()))

    # set the near far ration computation up.
    viewer.getCamera().setComputeNearFarMode(osg.CullSettings.COMPUTE_NEAR_FAR_USING_PRIMITIVES)
    viewer.getCamera().setNearFarRatio(0.000003)


    speed = 1.0
    while arguments.read("-f")  or  arguments.read("--fixed") : speed = 0.0


    rotation = osg.Quat()
    vec4 = osg.Vec4()
    while arguments.read("--rotate-model",vec4[0],vec4[1],vec4[2],vec4[3]) :
        local_rotate = osg.Quat()
        local_rotate.makeRotate(osg.DegreesToRadians(vec4[0]),vec4[1],vec4[2],vec4[3])
        
        rotation = rotation * local_rotate

    nc = 0
    flightpath_filename = str()
    while arguments.read("--flight-path",flightpath_filename) :
        fin = osgDB.ifstream(flightpath_filename.c_str())
        if fin :
            path = osg.AnimationPath()
            path.read(fin)
            nc = osg.AnimationPathCallback(path)
    
    trackerMode = osgGA.NodeTrackerManipulator.NODE_CENTER_AND_ROTATION
    mode = str()
    while arguments.read("--tracker-mode",mode) :
        if mode=="NODE_CENTER_AND_ROTATION" : trackerMode = osgGA.NodeTrackerManipulator.NODE_CENTER_AND_ROTATION
        elif mode=="NODE_CENTER_AND_AZIM" : trackerMode = osgGA.NodeTrackerManipulator.NODE_CENTER_AND_AZIM
        elif mode=="NODE_CENTER" : trackerMode = osgGA.NodeTrackerManipulator.NODE_CENTER
        else:
            print "Unrecognized --tracker-mode option ", mode, ", valid options are:"
            print "    NODE_CENTER_AND_ROTATION"
            print "    NODE_CENTER_AND_AZIM"
            print "    NODE_CENTER"
            return 1
    
    
    rotationMode = osgGA.NodeTrackerManipulator.TRACKBALL
    while arguments.read("--rotation-mode",mode) :
        if mode=="TRACKBALL" : rotationMode = osgGA.NodeTrackerManipulator.TRACKBALL
        elif mode=="ELEVATION_AZIM" : rotationMode = osgGA.NodeTrackerManipulator.ELEVATION_AZIM
        else:
            print "Unrecognized --rotation-mode option ", mode, ", valid options are:"
            print "    TRACKBALL"
            print "    ELEVATION_AZIM"
            return 1

    useOverlay = True
    while arguments.read("--no-overlay")  or  arguments.read("-n") : useOverlay = False
    
    technique = osgSim.OverlayNode.OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY
    while arguments.read("--object") : technique = osgSim.OverlayNode.OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY
    while arguments.read("--ortho")  or  arguments.read("--orthographic") : technique = osgSim.OverlayNode.VIEW_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY
    while arguments.read("--persp")  or  arguments.read("--perspective") : technique = osgSim.OverlayNode.VIEW_DEPENDENT_WITH_PERSPECTIVE_OVERLAY

    overlayTextureUnit = 1
    while arguments.read("--unit", overlayTextureUnit) : 
    
    pathfile = str()
    while arguments.read("-p",pathfile) : 

    addFireEffect = arguments.read("--fire")

    # if user request help write it out to cout.
    if arguments.read("-h")  or  arguments.read("--help") :
        arguments.getApplicationUsage().write(std.cout)
        return 1
    
    
    tm = osgGA.NodeTrackerManipulator()
    
    overlayFilename = str()
    while arguments.read("--overlay", overlayFilename) : 

    # read the scene from the list of file specified commandline args.
    root = osgDB.readNodeFiles(arguments)

    if  not root : root = createEarth()

    if  not root : return 0


    if  not overlayFilename.empty() :
        #osg.Object *pObj = osgDB.readObjectFile("alaska_clean.shp")
        #osg.Geode shapefile = dynamic_cast<osg.Geode*> (pObj)
        #
        #ConvertLatLon2EllipsoidCoordinates latlon2em
        #shapefile.accept(latlon2em)

        shapefile = osgDB.readNodeFile(overlayFilename)
        
        if  not shapefile :
            osg.notify(osg.NOTICE), "File `", overlayFilename, "` not found"
            return 1

        csn = dynamic_cast<osg.CoordinateSystemNode*>(root)
        if csn :

            overlayNode = osgSim.OverlayNode(technique)
            overlayNode.getOrCreateStateSet().setTextureAttribute(1, osg.TexEnv(osg.TexEnv.DECAL))
            overlayNode.setOverlaySubgraph(shapefile)
            overlayNode.setOverlayTextureSizeHint(1024)
            overlayNode.setOverlayTextureUnit(overlayTextureUnit)

            # insert the OverlayNode between the coordinate system node and its children.
            for(unsigned int i=0 i<csn.getNumChildren() ++i)
                overlayNode.addChild( csn.getChild(i) )

            csn.removeChildren(0, csn.getNumChildren())
            csn.addChild(overlayNode)

            viewer.setSceneData(csn)
        else:
            overlayNode = osgSim.OverlayNode(technique)
            overlayNode.getOrCreateStateSet().setTextureAttribute(1, osg.TexEnv(osg.TexEnv.DECAL))
            overlayNode.setOverlaySubgraph(shapefile)
            overlayNode.setOverlayTextureSizeHint(1024)
            overlayNode.addChild(root)

            viewer.setSceneData(overlayNode)
    else:
    

        # add a viewport to the viewer and attach the scene graph.
        viewer.setSceneData(root)

        csn = dynamic_cast<osg.CoordinateSystemNode*>(root)
        if csn :

            overlayNode = osgSim.OverlayNode()
            if useOverlay :
                overlayNode = osgSim.OverlayNode(technique)

                # insert the OverlayNode between the coordinate system node and its children.
                for(unsigned int i=0 i<csn.getNumChildren() ++i)
                    overlayNode.addChild( csn.getChild(i) )

                csn.removeChildren(0, csn.getNumChildren())
                csn.addChild(overlayNode)

                # tell the overlay node to continously update its overlay texture
                # as we know we'll be tracking a moving target.
                overlayNode.setContinuousUpdate(True)


            cessna = osgDB.readNodeFile("cessna.osgt")
            if cessna :
                s = 200000.0 / cessna.getBound().radius()

                scaler = osg.MatrixTransform()
                scaler.addChild(cessna)
                scaler.setMatrix(osg.Matrixd.scale(s,s,s)*osg.Matrixd.rotate(rotation))
                scaler.getOrCreateStateSet().setMode(GL_RESCALE_NORMAL,osg.StateAttribute.ON)
                
                if addFireEffect :
                    center = cessna.getBound().center()
                    
                    fire = osgParticle.FireEffect(center, 10.0)
                    scaler.addChild(fire)
                

                if False :
                    ss = osgSim.SphereSegment(
                                        osg.Vec3(0.0,0.0,0.0), # center
                                        19.9, # radius
                                        osg.DegreesToRadians(135.0),
                                        osg.DegreesToRadians(240.0),
                                        osg.DegreesToRadians(-10.0),
                                        osg.DegreesToRadians(30.0),
                                        60)

                    scaler.addChild(ss)

                mt = osg.MatrixTransform()
                mt.addChild(scaler)


                if  not nc : nc = ModelPositionCallback(speed)

                mt.setUpdateCallback(nc)

                csn.addChild(mt)

                # if we are using an overaly node, use the cessna subgraph as the overlay subgraph
                if overlayNode.valid() :
                    overlayNode.setOverlaySubgraph(mt)

                tm = osgGA.NodeTrackerManipulator()
                tm.setTrackerMode(trackerMode)
                tm.setRotationMode(rotationMode)
                tm.setTrackNode(scaler)
            else:
                 print "Failed to read cessna.osgt"


    # set up camera manipulators.
        keyswitchManipulator = osgGA.KeySwitchMatrixManipulator()

        if tm.valid() : keyswitchManipulator.addMatrixManipulator( ord("0"), "NodeTracker", tm )

        keyswitchManipulator.addMatrixManipulator( ord("1"), "Trackball", osgGA.TrackballManipulator() )
        keyswitchManipulator.addMatrixManipulator( ord("2"), "Flight", osgGA.FlightManipulator() )
        keyswitchManipulator.addMatrixManipulator( ord("3"), "Drive", osgGA.DriveManipulator() )
        keyswitchManipulator.addMatrixManipulator( ord("4"), "Terrain", osgGA.TerrainManipulator() )

        if  not pathfile.empty() :
            apm = osgGA.AnimationPathManipulator(pathfile)
            if apm  or   not apm.valid() : 
                num = keyswitchManipulator.getNumMatrixManipulators()
                keyswitchManipulator.addMatrixManipulator( ord("5"), "Path", apm )
                keyswitchManipulator.selectMatrixManipulator(num)

        viewer.setCameraManipulator( keyswitchManipulator )

    # viewer.setThreadingModel(osgViewer.Viewer.SingleThreaded)

    return viewer.run()


if __name__ == "__main__":
    main(sys.argv)
Exemple #8
0
class IntersectionUpdateCallback (osg.NodeCallback) :
virtual void operator()(osg.Node* #node, osg.NodeVisitor* nv)
            if  not root_  or   not terrain_  or   not ss_  or   not intersectionGroup_ :
                osg.notify(osg.NOTICE), "IntersectionUpdateCallback not set up correctly."
                return

            #traverse(node,nv)
            frameCount_++
            if frameCount_ > 200 :
                # first we need find the transformation matrix that takes
                # the terrain into the coordinate frame of the sphere segment.
                terrainLocalToWorld = osg.Matrixd()
                terrain_worldMatrices = terrain_.getWorldMatrices(root_)
                if terrain_worldMatrices.empty() : terrainLocalToWorld.makeIdentity()
                elif terrain_worldMatrices.size()==1 : terrainLocalToWorld = terrain_worldMatrices.front()
                else:
                    osg.notify(osg.NOTICE), "IntersectionUpdateCallback: warning cannot interestect with multiple terrain instances, just uses first one."
                    terrainLocalToWorld = terrain_worldMatrices.front()

                # sphere segment is easier as this callback is attached to the node, so the node visitor has the unique path to it already.
                ssWorldToLocal = osg.computeWorldToLocal(nv.getNodePath())

                # now we can compute the terrain to ss transform
                possie = terrainLocalToWorld*ssWorldToLocal

                lines = ss_.computeIntersection(possie, terrain_)
                if  not lines.empty() :
                    if intersectionGroup_.valid() :
                        # now we need to place the intersections which are in the SphereSegmenet's coordinate frame into
                        # to the final position.
                        mt = osg.MatrixTransform()
                        mt.setMatrix(osg.computeLocalToWorld(nv.getNodePath()))
                        intersectionGroup_.addChild(mt)

                        # print "matrix = ", mt.getMatrix()

                        geode = osg.Geode()
                        mt.addChild(geode)

                        geode.getOrCreateStateSet().setMode(GL_LIGHTING,osg.StateAttribute.OFF)

                        for(osgSim.SphereSegment.LineList.iterator itr=lines.begin()
                           not = lines.end()
                           ++itr)
                            geom = osg.Geometry()
                            geode.addDrawable(geom)

                            vertices = itr
                            geom.setVertexArray(vertices)
                            geom.addPrimitiveSet(osg.DrawArrays(GL_LINE_STRIP, 0, vertices.getNumElements()))
                else:
                       osg.notify(osg.NOTICE), "No intersections found"


                frameCount_ = 0
    root_ = osg.observer_ptr<osg.Group>()
    terrain_ = osg.observer_ptr<osg.Geode>()
    ss_ = osg.observer_ptr<osgSim.SphereSegment>()
    intersectionGroup_ = osg.observer_ptr<osg.Group>()
    frameCount_ = unsigned()


class RotateUpdateCallback (osg.NodeCallback) :
    RotateUpdateCallback()  i=0
        virtual void operator()(osg.Node* node, osg.NodeVisitor* nv)
            ss = dynamic_cast<osgSim.SphereSegment *>(node)
            if ss :
                ss.setArea(osg.Vec3(cos(i/(2*osg.PI)),sin(i/(2*osg.PI)),0), osg.PI_2, osg.PI_2)

                i += 0.1

    i = float()


def createMovingModel(center, radius, terrainGeode, root, createMovingRadar):

    
    animationLength = 10.0

    animationPath = createAnimationPath(center,radius,animationLength)

    model = osg.Group()

    glider = osgDB.readNodeFile("glider.osgt")
    if glider :
        bs = glider.getBound()

        size = radius/bs.radius()*0.3
        positioned = osg.MatrixTransform()
        positioned.setDataVariance(osg.Object.STATIC)
        positioned.setMatrix(osg.Matrix.translate(-bs.center())*
                                     osg.Matrix.scale(size,size,size)*
                                     osg.Matrix.rotate(osg.inDegrees(-90.0),0.0,0.0,1.0))

        positioned.addChild(glider)

        xform = osg.PositionAttitudeTransform()
        xform.getOrCreateStateSet().setMode(GL_NORMALIZE, osg.StateAttribute.ON)
        xform.setUpdateCallback(osg.AnimationPathCallback(animationPath,0.0,1.0))
        xform.addChild(positioned)
        model.addChild(xform)

    if createMovingRadar :
        # The IntersectionUpdateCallback has to have a safe place to put all its generated geometry into,
        # and this group can't be in the parental chain of the callback otherwise we will end up invalidating
        # traversal iterators.
        intersectionGroup = osg.Group()
        root.addChild(intersectionGroup)

        xform = osg.PositionAttitudeTransform()
        xform.setUpdateCallback(osg.AnimationPathCallback(animationPath,0.0,1.0))

        ss = osgSim.SphereSegment(osg.Vec3d(0.0,0.0,0.0),
                                700.0, # radius
                                osg.DegreesToRadians(135.0),
                                osg.DegreesToRadians(240.0),
                                osg.DegreesToRadians(-60.0),
                                osg.DegreesToRadians(-40.0),
                                60)

        iuc = IntersectionUpdateCallback()
        iuc.frameCount_ = 0
        iuc.root_ = root
        iuc.terrain_ = terrainGeode
        iuc.ss_ = ss
        iuc.intersectionGroup_ = intersectionGroup
        ss.setUpdateCallback(iuc)
        ss.setAllColors(osg.Vec4(1.0,1.0,1.0,0.5))
        ss.setSideColor(osg.Vec4(0.5,1.0,1.0,0.1))
        xform.addChild(ss)
        model.addChild(xform)

    cessna = osgDB.readNodeFile("cessna.osgt")
    if cessna :
        bs = cessna.getBound()

        text = osgText.Text()
        size = radius/bs.radius()*0.3

        text.setPosition(bs.center())
        text.setText("Cessna")
        text.setAlignment(osgText.Text.CENTER_CENTER)
        text.setAxisAlignment(osgText.Text.SCREEN)
        text.setCharacterSize(40.0)
        text.setCharacterSizeMode(osgText.Text.OBJECT_COORDS)

        geode = osg.Geode()
        geode.addDrawable(text)

        lod = osg.LOD()
        lod.setRangeMode(osg.LOD.PIXEL_SIZE_ON_SCREEN)
        lod.setRadius(cessna.getBound().radius())
        lod.addChild(geode,0.0,100.0)
        lod.addChild(cessna,100.0,10000.0)


        positioned = osg.MatrixTransform()
        positioned.getOrCreateStateSet().setMode(GL_NORMALIZE, osg.StateAttribute.ON)
        positioned.setDataVariance(osg.Object.STATIC)
        positioned.setMatrix(osg.Matrix.translate(-bs.center())*
                                     osg.Matrix.scale(size,size,size)*
                                     osg.Matrix.rotate(osg.inDegrees(180.0),0.0,0.0,1.0))

        #positioned.addChild(cessna)
        positioned.addChild(lod)

        xform = osg.MatrixTransform()
        xform.setUpdateCallback(osg.AnimationPathCallback(animationPath,0.0,2.0))
        xform.addChild(positioned)

        model.addChild(xform)

    return model

def createOverlay(center, radius):

    
    group = osg.Group()

    # create a grid of lines.
        geom = osg.Geometry()

        num_rows = 10

        left = center+osg.Vec3(-radius,-radius,0.0)
        right = center+osg.Vec3(radius,-radius,0.0)
        delta_row = osg.Vec3(0.0,2.0*radius/float(num_rows-1),0.0)

        top = center+osg.Vec3(-radius,radius,0.0)
        bottom = center+osg.Vec3(-radius,-radius,0.0)
        delta_column = osg.Vec3(2.0*radius/float(num_rows-1),0.0,0.0)

        vertices = osg.Vec3Array()
        for(unsigned int i=0 i<num_rows ++i)
            vertices.push_back(left)
            vertices.push_back(right)
            left += delta_row
            right += delta_row

            vertices.push_back(top)
            vertices.push_back(bottom)
            top += delta_column
            bottom += delta_column

        geom.setVertexArray(vertices)

        color = *(osg.Vec4ubArray(1))
        color[0].set(0,0,0,255)
        geom.setColorArray(color, osg.Array.BIND_OVERALL)

        geom.addPrimitiveSet(osg.DrawArrays(GL_LINES,0,vertices.getNumElements()))

        geom.getOrCreateStateSet().setMode(GL_LIGHTING,osg.StateAttribute.OFF)

        geode = osg.Geode()
        geode.addDrawable(geom)
        group.addChild(geode)

    return group

def computeTerrainIntersection(subgraph, x, y):

    
    bs = subgraph.getBound()
    zMax = bs.center().z()+bs.radius()
    zMin = bs.center().z()-bs.radius()

    intersector = osgUtil.LineSegmentIntersector(osg.Vec3(x,y,zMin),osg.Vec3(x,y,zMax))

    iv = osgUtil.IntersectionVisitor(intersector)

    subgraph.accept(iv)

    if intersector.containsIntersections() :
        return intersector.getFirstIntersection().getWorldIntersectPoint()

    return osg.Vec3(x,y,0.0)


#######################################
# MAIN SCENE GRAPH BUILDING FUNCTION
#######################################

def build_world(root, testCase, useOverlay, technique):

    

    # create terrain
    terrainGeode = 0
        terrainGeode = osg.Geode()

        stateset = osg.StateSet()
        image = osgDB.readImageFile("Images/lz.rgb")
        if image :
            texture = osg.Texture2D()
            texture.setImage(image)
            stateset.setTextureAttributeAndModes(0,texture,osg.StateAttribute.ON)

        terrainGeode.setStateSet( stateset )


            numColumns = 38
            numRows = 39
            unsigned int r, c

            origin = osg.Vec3(0.0,0.0,0.0)
            size = osg.Vec3(1000.0,1000.0,250.0)

            geometry = osg.Geometry()

            v = *(osg.Vec3Array(numColumns*numRows))
            tc = *(osg.Vec2Array(numColumns*numRows))
            color = *(osg.Vec4ubArray(1))

            color[0].set(255,255,255,255)

            rowCoordDelta = size.y()/(float)(numRows-1)
            columnCoordDelta = size.x()/(float)(numColumns-1)

            rowTexDelta = 1.0/(float)(numRows-1)
            columnTexDelta = 1.0/(float)(numColumns-1)

            # compute z range of z values of grid data so we can scale it.
            min_z = FLT_MAX
            max_z = -FLT_MAX
            for(r=0r<numRows++r)
                for(c=0c<numColumns++c)
                    min_z = osg.minimum(min_z,vertex[r+c*numRows][2])
                    max_z = osg.maximum(max_z,vertex[r+c*numRows][2])

            scale_z = size.z()/(max_z-min_z)

            pos = origin
            tex = osg.Vec2(0.0,0.0)
            vi = 0
            for(r=0r<numRows++r)
                pos.x() = origin.x()
                tex.x() = 0.0
                for(c=0c<numColumns++c)
                    v[vi].set(pos.x(),pos.y(),pos.z()+(vertex[r+c*numRows][2]-min_z)*scale_z)
                    tc[vi] = tex
                    pos.x()+=columnCoordDelta
                    tex.x()+=columnTexDelta
                    ++vi
                pos.y() += rowCoordDelta
                tex.y() += rowTexDelta

            geometry.setVertexArray(v)
            geometry.setTexCoordArray(0, tc)
            geometry.setColorArray(color, osg.Array.BIND_OVERALL)

            for(r=0r<numRows-1++r)
                drawElements = *(osg.DrawElementsUShort(GL_QUAD_STRIP,2*numColumns))
                geometry.addPrimitiveSet(drawElements)
                ei = 0
                for(c=0c<numColumns++c)
                    drawElements[ei++] = (r+1)*numColumns+c
                    drawElements[ei++] = (r)*numColumns+c

            smoother = osgUtil.SmoothingVisitor()
            smoother.smooth(*geometry)

            terrainGeode.addDrawable(geometry)



    # create sphere segment
    ss = 0

        terrainToSS = osg.Matrix()

        switch(testCase)
            case(0):
                ss = osgSim.SphereSegment(
                                computeTerrainIntersection(terrainGeode,550.0,780.0), # center
                                510.0, # radius
                                osg.DegreesToRadians(135.0),
                                osg.DegreesToRadians(240.0),
                                osg.DegreesToRadians(-10.0),
                                osg.DegreesToRadians(30.0),
                                60)
                root.addChild(ss)
                break
            case(1):
                ss = osgSim.SphereSegment(
                                computeTerrainIntersection(terrainGeode,550.0,780.0), # center
                                510.0, # radius
                                osg.DegreesToRadians(45.0),
                                osg.DegreesToRadians(240.0),
                                osg.DegreesToRadians(-10.0),
                                osg.DegreesToRadians(30.0),
                                60)
                root.addChild(ss)
                break
            case(2):
                ss = osgSim.SphereSegment(
                                computeTerrainIntersection(terrainGeode,550.0,780.0), # center
                                510.0, # radius
                                osg.DegreesToRadians(5.0),
                                osg.DegreesToRadians(355.0),
                                osg.DegreesToRadians(-10.0),
                                osg.DegreesToRadians(30.0),
                                60)
                root.addChild(ss)
                break
            case(3):
                ss = osgSim.SphereSegment(
                                computeTerrainIntersection(terrainGeode,550.0,780.0), # center
                                510.0, # radius
                                osg.DegreesToRadians(0.0),
                                osg.DegreesToRadians(360.0),
                                osg.DegreesToRadians(-10.0),
                                osg.DegreesToRadians(30.0),
                                60)
                root.addChild(ss)
                break
            case(4):
                ss = osgSim.SphereSegment(osg.Vec3d(0.0,0.0,0.0),
                                700.0, # radius
                                osg.DegreesToRadians(135.0),
                                osg.DegreesToRadians(240.0),
                                osg.DegreesToRadians(-60.0),
                                osg.DegreesToRadians(-40.0),
                                60)

                mt = osg.MatrixTransform()

                mt.setMatrix(osg.Matrix(-0.851781, 0.156428, -0.5, 0,
                                          -0.180627, -0.983552, -6.93889e-18, 0,
                                          -0.491776, 0.0903136, 0.866025, 0,
                                          598.217, 481.957, 100, 1))
                mt.addChild(ss)

                terrainToSS.invert(mt.getMatrix())

                root.addChild(mt)
                break
            case(5):
                ss = osgSim.SphereSegment(osg.Vec3d(0.0,0.0,0.0),
                                700.0, # radius
                                osg.DegreesToRadians(35.0),
                                osg.DegreesToRadians(135.0),
                                osg.DegreesToRadians(-60.0),
                                osg.DegreesToRadians(-40.0),
                                60)

                mt = osg.MatrixTransform()

                mt.setMatrix(osg.Matrix(-0.851781, 0.156428, -0.5, 0,
                                          -0.180627, -0.983552, -6.93889e-18, 0,
                                          -0.491776, 0.0903136, 0.866025, 0,
                                          598.217, 481.957, 100, 1))
                mt.addChild(ss)

                terrainToSS.invert(mt.getMatrix())

                root.addChild(mt)
                break
            case(6):
                ss = osgSim.SphereSegment(osg.Vec3d(0.0,0.0,0.0),
                                700.0, # radius
                                osg.DegreesToRadians(-45.0),
                                osg.DegreesToRadians(45.0),
                                osg.DegreesToRadians(-60.0),
                                osg.DegreesToRadians(-40.0),
                                60)

                mt = osg.MatrixTransform()

                mt.setMatrix(osg.Matrix(-0.851781, 0.156428, -0.5, 0,
                                          -0.180627, -0.983552, -6.93889e-18, 0,
                                          -0.491776, 0.0903136, 0.866025, 0,
                                          598.217, 481.957, 100, 1))
                mt.addChild(ss)

                terrainToSS.invert(mt.getMatrix())

                root.addChild(mt)
                break
            case(7):
                ss = osgSim.SphereSegment(
                                computeTerrainIntersection(terrainGeode,550.0,780.0), # center
                                510.0, # radius
                                osg.DegreesToRadians(-240.0),
                                osg.DegreesToRadians(-135.0),
                                osg.DegreesToRadians(-10.0),
                                osg.DegreesToRadians(30.0),
                                60)
                ss.setUpdateCallback(RotateUpdateCallback())
                root.addChild(ss)
                break
        

        if ss.valid() :
            ss.setAllColors(osg.Vec4(1.0,1.0,1.0,0.5))
            ss.setSideColor(osg.Vec4(0.0,1.0,1.0,0.1))

            if  not ss.getParents().empty() :
                ss.getParent(0).addChild(ss.computeIntersectionSubgraph(terrainToSS, terrainGeode))



    if useOverlay :
        overlayNode = osgSim.OverlayNode(technique)
        overlayNode.getOrCreateStateSet().setTextureAttribute(1, osg.TexEnv(osg.TexEnv.DECAL))

        bs = terrainGeode.getBound()
        overlaySubgraph = createOverlay(bs.center(), bs.radius()*0.5)
        overlaySubgraph.addChild(ss)
        overlayNode.setOverlaySubgraph(overlaySubgraph)
        overlayNode.setOverlayTextureSizeHint(1024)
        overlayNode.setOverlayBaseHeight(0.0)
        overlayNode.addChild(terrainGeode)

        root.addChild(overlayNode)
    else:
      root.addChild(terrainGeode)

    # create particle effects
        position = computeTerrainIntersection(terrainGeode,100.0,100.0)

        explosion = osgParticle.ExplosionEffect(position, 10.0)
        smoke = osgParticle.SmokeEffect(position, 10.0)
        fire = osgParticle.FireEffect(position, 10.0)

        root.addChild(explosion)
        root.addChild(smoke)
        root.addChild(fire)

    # create particle effects
        position = computeTerrainIntersection(terrainGeode,200.0,100.0)

        explosion = osgParticle.ExplosionEffect(position, 1.0)
        smoke = osgParticle.SmokeEffect(position, 1.0)
        fire = osgParticle.FireEffect(position, 1.0)

        root.addChild(explosion)
        root.addChild(smoke)
        root.addChild(fire)


    createMovingRadar = True

    # create the moving models.
        root.addChild(createMovingModel(osg.Vec3(500.0,500.0,500.0),100.0, terrainGeode, root, createMovingRadar))


#######################################
# main()
#######################################


def main(argv):


    
    # use an ArgumentParser object to manage the program arguments.
    arguments = osg.ArgumentParser(argv)

    # set up the usage document, in case we need to print out how to use this program.
    arguments.getApplicationUsage().setDescription(arguments.getApplicationName()+" is the example which demonstrates use of particle systems.")
    arguments.getApplicationUsage().setCommandLineUsage(arguments.getApplicationName()+" [options] image_file_left_eye image_file_right_eye")
    arguments.getApplicationUsage().addCommandLineOption("-h or --help","Display this information")


    # construct the viewer.
    viewer = osgViewer.Viewer(arguments)

    # if user request help write it out to cout.
    testCase = 0
    while arguments.read("-t", testCase) : 

    useOverlay = False
    technique = osgSim.OverlayNode.OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY
    while arguments.read("--object") :  useOverlay = True technique = osgSim.OverlayNode.OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY 
    while arguments.read("--ortho")  or  arguments.read("--orthographic") :  useOverlay = True technique = osgSim.OverlayNode.VIEW_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY 
    while arguments.read("--persp")  or  arguments.read("--perspective") :  useOverlay = True technique = osgSim.OverlayNode.VIEW_DEPENDENT_WITH_PERSPECTIVE_OVERLAY 


    # if user request help write it out to cout.
    if arguments.read("-h")  or  arguments.read("--help") :
        arguments.getApplicationUsage().write(std.cout)
        return 1

    # any option left unread are converted into errors to write out later.
    arguments.reportRemainingOptionsAsUnrecognized()

    # report any errors if they have occurred when parsing the program arguments.
    if arguments.errors() :
        arguments.writeErrorMessages(std.cout)
        return 1

    root = osg.Group()
    build_world(root, testCase, useOverlay, technique)

    # add a viewport to the viewer and attach the scene graph.
    viewer.setSceneData(root)

    return viewer.run()


if __name__ == "__main__":
    main(sys.argv)
Exemple #9
0
        subscriptText = osgText.Text()
        subscriptText.setFont(font)
        subscriptText.setText(subscript)
        subscriptText.setAlignment(osgText.Text.RIGHT_CENTER)
        subscriptText.setAxisAlignment(osgText.Text.XZ_PLANE)
        subscriptText.setPosition(bb.center()-osg.Vec3((bb.xMax()-bb.xMin())*4.3,-(bb.yMax()-bb.yMin())*0.5,(bb.zMax()-bb.zMin())*0.6))
        subscriptText.setColor(osg.Vec4(0.0,0.0,0.0,1.0)) # black

        geode.addDrawable( subscriptText )

    return geode

osg. Node* createGlobe( osg.BoundingBox bb,float ratio,  str filename)
    xform = osg.MatrixTransform()
    xform.setUpdateCallback(osg.AnimationPathCallback(bb.center(),osg.Vec3(0.0,0.0,1.0),osg.inDegrees(10.0)))

    bluemarble =  0 : osgDB: if (filename.empty()) else readNodeFile(filename.c_str())
    if bluemarble :
        bs = bluemarble.getBound()
        s = 1.2*bb.radius()/bs.radius()
        positioner = osg.MatrixTransform()
        positioner.setMatrix(osg.Matrix.translate(-bs.center())*osg.Matrix.scale(s,s,s)*osg.Matrix.translate(bb.center()))
        positioner.addChild(bluemarble)

        xform.addChild(positioner)
    else:

        geode = osg.Geode()

        stateset = geode.getOrCreateStateSet()

    # load the nodes from the commandline arguments.
    loadedModel = osgDB.readNodeFiles(arguments)

    # if not loaded assume no arguments passed in, try use default mode instead.
    if  not loadedModel : loadedModel = osgDB.readNodeFile("cessna.osgt")

    if  not loadedModel :
        return 1

    # create a transform to spin the model.
    loadedModelTransform = osg.MatrixTransform()
    loadedModelTransform.addChild(loadedModel)

    nc = osg.AnimationPathCallback(loadedModelTransform.getBound().center(),osg.Vec3(0.0,0.0,1.0),osg.inDegrees(45.0))
    loadedModelTransform.setUpdateCallback(nc)

    rootNode = osg.Group()
    rootNode.addChild(createPreRenderSubGraph(loadedModelTransform,tex_width,tex_height, renderImplementation, useImage, useTextureRectangle, useHDR, samples, colorSamples))

    #osgDB.writeNodeFile(*rootNode, "test.osgb")

    # add model to the viewer.
    viewer.setSceneData( rootNode )

    return viewer.run()


if __name__ == "__main__":
    main(sys.argv)