Exemple #1
0
def create_graph(loc, dist, transport_mode, loc_type="address"):
    """Transport mode = ‘walk’, ‘bike’, ‘drive’, ‘drive_service’, ‘all’, ‘all_private’, ‘none’"""
    if loc_type == "address":
            G = ox.graph_from_address(loc, dist=dist, network_type=transport_mode)
    elif loc_type == "points":
            G = ox.graph_from_point(loc, dist=dist, network_type=transport_mode )
    return G
Exemple #2
0
def save_graph(target, graph_name, distance=1000, is_address=True):

    # Load graph from OSM
    if is_address:
        graph = ox.graph_from_address(address=target,
                                      distance=distance,
                                      network_type='drive')
    else:
        graph = ox.graph_from_place(query=target, network_type='drive')

    # Project graph
    graph_proj = ox.project_graph(graph)

    folder_path = path.join('graphs', graph_name)
    if not path.exists(folder_path):
        mkdir(folder_path)

    graph_data = graph_proj.graph
    serialize_dict(dictionary=graph_data,
                   file_path=path.join(folder_path, 'graph_data.pkl.gz'))

    # We make the graph strongly connected to ensure that any combination of source / sink
    # constitutes a valid problem
    graph_component = ox.get_largest_component(graph_proj,
                                               strongly=True).to_directed()

    # Save pictures of the graph
    plot_road_graph(graph_component,
                    graph_name=graph_name,
                    file_path=path.join(folder_path, 'graph'))

    # Save graph
    ox.save_graphml(graph_component,
                    filename='graph.graphml',
                    folder=folder_path,
                    gephi=True)

    # Save a selection of graph-wide stats.
    stats_file = path.join(folder_path, 'stats.csv')
    delete_if_exists(stats_file)

    n_nodes = graph_component.number_of_nodes()
    n_edges = graph_component.number_of_edges()
    avg_in_deg = np.average([d for _, d in graph_component.in_degree()])
    avg_out_deg = np.average([d for _, d in graph_component.out_degree()])
    diam = nx.diameter(graph_component)

    append_row_to_log(['Number of Nodes', n_nodes], stats_file)
    append_row_to_log(['Number of Edges', n_edges], stats_file)
    append_row_to_log(['Average In Degree', avg_in_deg], stats_file)
    append_row_to_log(['Average Out Degree', avg_out_deg], stats_file)
    append_row_to_log(['Diameter', diam], stats_file)

    cleaned_target = target.replace('\"', '').replace('\'',
                                                      '').replace(',', '')
    query = '{0}; Dist: {1}'.format(cleaned_target,
                                    distance) if is_address else cleaned_target
    append_row_to_log(['Query', query], stats_file)

    return graph_component
Exemple #3
0
def test_routing_folium():

    # calculate shortest path and plot as static image and leaflet web map
    import networkx as nx
    G = ox.graph_from_address('398 N. Sicily Pl., Chandler, Arizona',
                              distance=800,
                              network_type='drive')
    origin = (33.307792, -111.894940)
    destination = (33.312994, -111.894998)
    origin_node = ox.get_nearest_node(G, origin)
    destination_node = ox.get_nearest_node(G, destination, method='euclidean')
    route = nx.shortest_path(G, origin_node, destination_node)

    attributes = ox.get_route_edge_attributes(G, route, 'length')

    fig, ax = ox.plot_graph_route(G,
                                  route,
                                  save=True,
                                  filename='route',
                                  file_format='png')
    fig, ax = ox.plot_graph_route(G,
                                  route,
                                  origin_point=origin,
                                  destination_point=destination,
                                  save=True,
                                  filename='route',
                                  file_format='png')

    graph_map = ox.plot_graph_folium(G, popup_attribute='name')
    route_map = ox.plot_route_folium(G, route)
Exemple #4
0
def test_routing_folium():

    import networkx as nx
    with httmock.HTTMock(
            get_mock_response_content('overpass-response-3.json.gz')):
        G = ox.graph_from_address('398 N. Sicily Pl., Chandler, Arizona',
                                  distance=800,
                                  network_type='drive')
    origin = (33.307792, -111.894940)
    destination = (33.312994, -111.894998)
    origin_node = ox.get_nearest_node(G, origin)
    destination_node = ox.get_nearest_node(G, destination)
    route = nx.shortest_path(G, origin_node, destination_node)

    attributes = ox.get_route_edge_attributes(G, route, 'length')

    fig, ax = ox.plot_graph_route(G,
                                  route,
                                  save=True,
                                  filename='route',
                                  file_format='png')
    fig, ax = ox.plot_graph_route(G,
                                  route,
                                  origin_point=origin,
                                  destination_point=destination,
                                  save=True,
                                  filename='route',
                                  file_format='png')

    graph_map = ox.plot_graph_folium(G, popup_attribute='name')
    route_map = ox.plot_route_folium(G, route)
Exemple #5
0
def create_intersections_db_by_zip(data):
    """This function creates a database of the coordinates and streets of all intersections in a mile radius of a given zipcode. Currently set to drive network and a radius of 1610m (1 mile). Edit the parameters in line 81 to fit your preferences"""
    d = data[1]
    zipcode = d[1]
    city = d[2]
    state = d[3]
    county = d[4]

    tablename = "intersections_" + str(zipcode)

    try:
        cur.execute(
            "CREATE TABLE " + tablename +
            " (zip_code TEXT, city TEXT, state TEXT, county TEXT, latlon_str TEXT);"
        )

        latlon_array = []
        streetname_array = []
        latlon_array_str = ""
        streetname_array_str = ""

        try:
            G = ox.graph_from_address(zipcode,
                                      network_type='drive',
                                      distance=1610)
            G_proj = ox.project_graph(G)
            # clean up the intersections and extract their xy coords
            intersections = ox.clean_intersections(G_proj,
                                                   tolerance=15,
                                                   dead_ends=False)
            points = np.array([point.xy for point in intersections])

            gdf = gpd.GeoDataFrame(geometry=intersections)
            gdf.crs = G_proj.graph['crs']
            lonlat = ox.project_gdf(gdf, to_latlong=True)
            a = lonlat['geometry'].tolist()
            for coord in a:
                lon = coord.x
                lat = coord.y
                latlon_tuple = (lat, lon)

                # nearest_streets = get_nearest_streetnames(latlon_tuple)

                # streetname_array.append(nearest_streets)
                latlon_array.append(latlon_tuple)
        except:
            #THROW A WARNING THAT THERE IS NO LAT/LON DATA FOR THIS ZIPCODE
            pass

        latlon_array_str = str(latlon_array).strip('[]')
        # streetname_array_str = str(streetname_array).strip('[]')

        to_db = [zipcode, city, state, county, latlon_array_str]
        cmd = "INSERT INTO " + tablename + " (zip_code, city, state, county,latlon_str) VALUES (?, ?, ?, ?, ?);"
        cur.execute(cmd, to_db)

        for row in cur.execute("SELECT * from " + tablename):
            print(row)
    except:
        print(tablename + " already exists")
Exemple #6
0
def download_graph(loc_list, **kwargs):
	simplify = kwargs.get("simplify",True) # get rid of non-important nodes?
	auto_bbox = kwargs.get("auto_bbox",True) # auto query polygon bbox
	show_plot = kwargs.get("show_plot",True)
	distance = kwargs.get("distance",20000)
	print("osmnx download_graph()...")

	if isinstance(loc_list,list) and isinstance(loc_list[0],float) and len(loc_list)>2: # [lats,latn,lngw,lnge]
		north=loc_list[1]
		south=loc_list[0]
		east=loc_list[3]
		west=loc_list[2]
		G=ox.graph_from_bbox(north,south,east,west,network_type='drive',simplify=simplify)
	
	elif isinstance(loc_list,list) and isinstance(loc_list[0],float) and len(loc_list)==2:# [lat,lng]
		G=ox.graph_from_point(loc_list, distance=distance,network_type='drive',simplify=simplify)

	elif isinstance(loc_list, str) or (isinstance(loc_list,list) and isinstance(loc_list[0], str)):
		if auto_bbox: # addr or [addr1,addr2,] use auto bbox
			G=ox.graph_from_place(loc_list,network_type='drive',simplify=simplify)# No-distance arg
		else: #  addr or [addr1,addr2,] use distance
			G=ox.graph_from_address(loc_list,network_type='drive',distance=distance,simplify=simplify)
	else:
		print(__file__+" download_graph() input error: ",loc_list)
		return None

	if show_plot and iprint and Has_Display: 
		if iprint>=2: print("download_graph showing downloaded graph...")
		fig, ax = ox.plot_graph(G)
	if not simplify: 
		simplify_graph(G)
	if iprint>=2: 
		print ox.basic_stats(G)
	return G
Exemple #7
0
def test_routing_folium():

    import networkx as nx
    G = ox.graph_from_address('N. Sicily Pl., Chandler, Arizona',
                              distance=800,
                              network_type='drive')
    origin = (33.307792, -111.894940)
    destination = (33.312994, -111.894998)
    origin_node = ox.get_nearest_node(G, origin)
    destination_node = ox.get_nearest_node(G, destination)
    route = nx.shortest_path(G, origin_node, destination_node)
    fig, ax = ox.plot_graph_route(G,
                                  route,
                                  save=True,
                                  filename='route',
                                  file_format='png')
    fig, ax = ox.plot_graph_route(G,
                                  route,
                                  origin_point=origin,
                                  destination_point=destination,
                                  save=True,
                                  filename='route',
                                  file_format='png')

    graph_map = ox.plot_graph_folium(G, popup_attribute='name')
    route_map = ox.plot_route_folium(G, route)
Exemple #8
0
def create_graph(loc, dist, transport_mode="walk", loc_type="address"):

    if loc_type == "address":
        G = ox.graph_from_address(loc, dist=dist, network_type=transport_mode)
    elif loc_type == "points":
        G = ox.graph_from_point(loc, dist=dist, network_type=transport_mode)
    return G
Exemple #9
0
def load_map(name):
    if os.path.exists(name):
        G = pickle.load(open(name, 'rb'))
    else:
        G = ox.graph_from_address('Inner Harbor Baltimore, Maryland, USA', network_type='drive')
        pickle.dump(G, open(name, 'wb'))
    return G
Exemple #10
0
def graph(place_country, distance):  # filter
    # filter out some attributes
    # filter = ('["highway"!~"residential|unclassified|living_street|track|abandoned|path|footway|service|pedestrian|road|'
    #           'raceway|cycleway|steps|construction"]')
    # filter = (
    #     '["highway"!~"residential|unclassified|living_street|track|abandoned|path|footway|service|pedestrian|road|'
    #     'raceway|cycleway|steps|construction|primary|secondary|tertiary"]')
    # filter = (
    #     '["highway"!~"living_street|abandoned|footway|pedestrian|raceway|cycleway|steps|construction|'
    #     'bus_guideway|bridleway|corridor|escape|rest_area|track|sidewalk|proposed|path"]')
    # filter = (
    #     '["highway"!~"living_street|abandoned|steps|construction|'
    #     'bus_guideway|bridleway|corridor|escape|rest_area|track|sidewalk|proposed|path"]')
    filter = (
        '["highway"!~"living_street|abandoned|steps|construction|service|pedestrian|'
        'bus_guideway|bridleway|corridor|escape|rest_area|track|sidewalk|proposed|path|footway"]'
    )
    # filter = filter

    # import grapho (graphml)
    G = ox.graph_from_address(str(place_country),
                              distance=distance,
                              network_type='drive',
                              custom_filter=filter)

    # import shapefile
    # G_shp = ox.gdf_from_place(place_country)
    # import shapefile with edges and nodes
    # as the data is in WGS84 format, we might first want to reproject our data into metric system
    # so that our map looks better with the projection of the graph data in UTM format
    # G_projected = ox.project_graph(G)
    # save street network as ESRI shapefile (includes NODES and EDGES)
    name_place_country = re.sub('[/," ",:]', '_', place_country)
    # ox.save_graph_shapefile(G_projected, filename='network_' + name_place_country + '-shape')
    ox.save_graphml(G, filename=name_place_country + '.graphml')
Exemple #11
0
    def _get_cycleways(self):
        """
        Creates all cycleways in a city (networkx.MultiDiGraph).
        """
        useful_tags = ox.settings.useful_tags_way + ['cycleway']
        ox.config(use_cache=True,
                  log_console=True,
                  useful_tags_way=useful_tags)

        if self.query_type == 'city':
            if self.city_limits is True:
                cycleways = ox.graph_from_place(query=self.city_name,
                                                network_type='bike',
                                                simplify=False)
            else:
                cycleways = ox.graph_from_bbox(self.north,
                                               self.south,
                                               self.east,
                                               self.west,
                                               network_type='bike',
                                               simplify=False)

        elif self.query_type == 'address':
            cycleways = ox.graph_from_address(self.address,
                                              network_type='bike',
                                              dist=self.distance)

        non_cycleways = [
            (u, v, k) for u, v, k, d in cycleways.edges(keys=True, data=True)
            if not ('cycleway' in d or d['highway'] == 'cycleway')
        ]
        cycleways.remove_edges_from(non_cycleways)
        cycleways = ox.utils_graph.remove_isolated_nodes(cycleways)

        return cycleways
Exemple #12
0
def test_get_network_methods():

    import geopandas as gpd
    north, south, east, west = 37.79, 37.78, -122.41, -122.43
    with httmock.HTTMock(get_mock_response_content('overpass-response-6.json.gz')):
        G1 = ox.graph_from_bbox(north, south, east, west, network_type='drive_service')

    with httmock.HTTMock(get_mock_response_content()):
        G1 = ox.graph_from_bbox(north, south, east, west, network_type='drive_service', truncate_by_edge=True)

    location_point = (37.791427, -122.410018)
    bbox = ox.bbox_from_point(location_point, project_utm=True)
    with httmock.HTTMock(get_mock_response_content('overpass-response-8.json.gz')):
        G2 = ox.graph_from_point(location_point, distance=750, distance_type='bbox', network_type='drive')

    with httmock.HTTMock(get_mock_response_content('overpass-response-9.json.gz')):
        G3 = ox.graph_from_point(location_point, distance=500, distance_type='network')

    with httmock.HTTMock(get_mock_response_content('overpass-response-10.json.gz')):
        G4 = ox.graph_from_address(address='350 5th Ave, New York, NY', distance=1000, distance_type='network', network_type='bike')

    places = ['Los Altos, California, USA', {'city':'Los Altos Hills', 'state':'California'}, 'Loyola, California']
    with httmock.HTTMock(get_mock_response_content('overpass-response-11.json.gz')):
        G5 = ox.graph_from_place(places, network_type='all', clean_periphery=False)

    calif = gpd.read_file('tests/input_data/ZillowNeighborhoods-CA')
    mission_district = calif[(calif['CITY']=='San Francisco') & (calif['NAME']=='Mission')]
    polygon = mission_district['geometry'].iloc[0]
    with httmock.HTTMock(get_mock_response_content('overpass-response-12.json.gz')):
        G6 = ox.graph_from_polygon(polygon, network_type='walk')
Exemple #13
0
def test_routing_folium():

    G = ox.graph_from_address(address=address,
                              dist=500,
                              dist_type="bbox",
                              network_type="bike")

    # give each node a random elevation then calculate edge grades
    randm = np.random.random(size=len(G))
    elevs = {n: e for n, e in zip(G.nodes(), randm)}
    nx.set_node_attributes(G, name="elevation", values=elevs)
    G = ox.add_edge_grades(G, add_absolute=True)

    # give each edge speed and travel time attributes
    G = ox.add_edge_speeds(G)
    G = ox.add_edge_travel_times(G)

    orig_node = list(G.nodes())[5]
    dest_node = list(G.nodes())[-5]
    orig_pt = (G.nodes[orig_node]["y"], G.nodes[orig_node]["x"])
    dest_pt = (G.nodes[dest_node]["y"], G.nodes[dest_node]["x"])
    route = nx.shortest_path(G, orig_node, dest_node, weight="travel_time")

    attributes = ox.utils_graph.get_route_edge_attributes(
        G, route, "travel_time")

    fig, ax = ox.plot_graph_route(G,
                                  route,
                                  save=True,
                                  filename="route",
                                  file_format="png")

    fig, ax = ox.plot_graph_route(
        G,
        route,
        origin_point=orig_pt,
        destination_point=dest_pt,
        save=True,
        filename="route",
        file_format="png",
    )

    # test multiple routes
    fig, ax = ox.plot_graph_routes(G, [route, route])

    # test folium
    gm = ox.plot_graph_folium(G, popup_attribute="name")
    rm = ox.plot_route_folium(G, route)

    # test calling folium plotters with FeatureGroup instead of Map, and extra kwargs
    fg = folium.FeatureGroup(name="legend name", show=True)
    gm = ox.plot_graph_folium(G, graph_map=fg)
    assert isinstance(gm, folium.FeatureGroup)

    rm = ox.plot_route_folium(G,
                              route,
                              route_color="g",
                              route_map=fg,
                              tooltip="x")
    assert isinstance(rm, folium.FeatureGroup)
Exemple #14
0
 def create_graph(self, loc, dist, transport_mode = 'walk', loc_type = 'address'):
     G = None
     if loc_type == "address":
         G = ox.graph_from_address(loc, dist=dist, network_type=transport_mode)
     elif loc_type == "points":
         G = ox.graph_from_point(loc, dist=dist, network_type=transport_mode )
     return G
Exemple #15
0
def test_get_network_methods():

    from shapely import wkt

    # graph from bounding box
    north, south, east, west = 37.79, 37.78, -122.41, -122.43
    G1 = ox.graph_from_bbox(north, south, east, west, network_type='drive_service')
    G1 = ox.graph_from_bbox(north, south, east, west, network_type='drive_service', truncate_by_edge=True)

    # graph from point
    location_point = (37.791427, -122.410018)
    bbox = ox.bbox_from_point(location_point, project_utm=True)
    G2 = ox.graph_from_point(location_point, distance=750, distance_type='bbox', network_type='drive')
    G3 = ox.graph_from_point(location_point, distance=500, distance_type='network')

    # graph from address
    G4 = ox.graph_from_address(address='350 5th Ave, New York, NY', distance=1000, distance_type='network', network_type='bike')

    # graph from list of places
    places = ['Los Altos, California, USA', {'city':'Los Altos Hills', 'state':'California'}, 'Loyola, California']
    G5 = ox.graph_from_place(places, network_type='all', clean_periphery=False)

    # graph from polygon
    polygon = wkt.loads('POLYGON ((-122.418083 37.754154, -122.418082 37.766028, -122.410909 37.766028, -122.410908 37.754154, -122.418083 37.754154))')
    G6 = ox.graph_from_polygon(polygon, network_type='walk')

    # test custom query filter
    filtr = ('["area"!~"yes"]'
             '["highway"!~"motor|proposed|construction|abandoned|platform|raceway"]'
             '["foot"!~"no"]'
             '["service"!~"private"]'
             '["access"!~"private"]')
    G = ox.graph_from_point(location_point, network_type='walk', custom_filter=filtr)
    def get_map(self, name):

        file_path = os.path.dirname(os.path.abspath(__file__))

        file_path = file_path[:len(file_path) - 7] + 'maps/'

        try:
            with open(file_path + name + '.p', 'rb') as f:
                self._graph = pickle.load(f)
        except:

            try:

                self._graph = ox.graph_from_place(name, network_type='drive')
            except:
                self._graph = ox.graph_from_address(name,
                                                    distance=250,
                                                    network_type='drive')

            with open(file_path + name + '.p', 'wb') as f:
                pickle.dump(self._graph, f)

        self._graph_proj = ox.project_graph(self._graph)

        self._nodes, self._edges = ox.graph_to_gdfs(self._graph_proj,
                                                    nodes=True,
                                                    edges=True)
 def render_graph(self):
     Graph = ox.graph_from_address(self.address,
                                   network_type='walk',
                                   distance=self.run_distance / 2)
     Graph = ox.add_node_elevations(Graph, api_key=self.api_key)
     Graph = ox.add_edge_grades(Graph)
     return Graph
Exemple #18
0
    def _get_city_data_from_address(self):

        if self.city_dict['cycleways'] is True:
            self.cycleways = self._get_cycleways()
        if self.city_dict['roads'] is True:
            self.roads = ox.graph_from_address(self.address,
                                               network_type='drive',
                                               dist=self.distance)
        if self.city_dict['water'] is True:
            self.water = ox.geometries_from_address(self.address,
                                                    tags=self.water_tags,
                                                    dist=self.distance)
        if self.city_dict['green'] is True:
            self.green = ox.geometries_from_address(self.address,
                                                    tags=self.green_tags,
                                                    dist=self.distance)
        if self.city_dict['buildings'] is True:
            self.buildings = ox.geometries_from_address(self.address,
                                                        tags={
                                                            "building":
                                                            True,
                                                            'landuse':
                                                            'construction'
                                                        },
                                                        dist=self.distance)
        if self.city_dict['railways'] is True:
            self.railways = ox.geometries_from_address(self.address,
                                                       tags=self.railway_tags,
                                                       dist=self.distance)
Exemple #19
0
def test_get_network_methods():

    from shapely import wkt

    # graph from bounding box
    north, south, east, west = 37.79, 37.78, -122.41, -122.43
    G1 = ox.graph_from_bbox(north, south, east, west, network_type='drive_service')
    G1 = ox.graph_from_bbox(north, south, east, west, network_type='drive_service', truncate_by_edge=True)

    # graph from point
    location_point = (37.791427, -122.410018)
    bbox = ox.bbox_from_point(location_point, project_utm=True)
    G2 = ox.graph_from_point(location_point, distance=750, distance_type='bbox', network_type='drive')
    G3 = ox.graph_from_point(location_point, distance=500, distance_type='network')

    # graph from address
    G4 = ox.graph_from_address(address='350 5th Ave, New York, NY', distance=1000, distance_type='network', network_type='bike')

    # graph from list of places
    places = ['Los Altos, California, USA', {'city':'Los Altos Hills', 'state':'California'}, 'Loyola, California']
    G5 = ox.graph_from_place(places, network_type='all', clean_periphery=False)

    # graph from polygon
    polygon = wkt.loads('POLYGON ((-122.418083 37.754154, -122.418082 37.766028, -122.410909 37.766028, -122.410908 37.754154, -122.418083 37.754154))')
    G6 = ox.graph_from_polygon(polygon, network_type='walk')

    # test custom query filter
    filtr = ('["area"!~"yes"]'
             '["highway"!~"motor|proposed|construction|abandoned|platform|raceway"]'
             '["foot"!~"no"]'
             '["service"!~"private"]'
             '["access"!~"private"]')
    G = ox.graph_from_point(location_point, network_type='walk', custom_filter=filtr)
Exemple #20
0
def test_routing():

    G = ox.graph_from_address(address=address,
                              dist=500,
                              dist_type="bbox",
                              network_type="bike")

    # give each edge speed and travel time attributes
    G = ox.add_edge_speeds(G)
    G = ox.add_edge_speeds(G, hwy_speeds={"motorway": 100})
    G = ox.add_edge_travel_times(G)

    orig_x = np.array([-122.404771])
    dest_x = np.array([-122.401429])
    orig_y = np.array([37.794302])
    dest_y = np.array([37.794987])
    orig_node = ox.distance.nearest_nodes(G, orig_x, orig_y)[0]
    dest_node = ox.distance.nearest_nodes(G, dest_x, dest_y)[0]

    route = ox.shortest_path(G, orig_node, dest_node, weight="travel_time")
    attributes = ox.utils_graph.get_route_edge_attributes(G, route)
    attributes = ox.utils_graph.get_route_edge_attributes(
        G, route, "travel_time")

    fig, ax = ox.plot_graph_route(G, route, save=True)

    # test multiple origins-destinations
    n = 5
    nodes = np.array(G.nodes)
    origs = np.random.choice(nodes, size=n, replace=True)
    dests = np.random.choice(nodes, size=n, replace=True)
    paths1 = ox.shortest_path(G, origs, dests, weight="length", cpus=1)
    paths2 = ox.shortest_path(G, origs, dests, weight="length", cpus=2)
    paths3 = ox.shortest_path(G, origs, dests, weight="length", cpus=None)
    assert paths1 == paths2 == paths3

    # test k shortest paths
    routes = ox.k_shortest_paths(G,
                                 orig_node,
                                 dest_node,
                                 k=2,
                                 weight="travel_time")
    fig, ax = ox.plot_graph_routes(G, list(routes))

    # test folium with keyword arguments to pass to folium.PolyLine
    gm = ox.plot_graph_folium(G,
                              popup_attribute="name",
                              color="#333333",
                              weight=5,
                              opacity=0.7)
    rm = ox.plot_route_folium(G, route, color="#cc0000", weight=5, opacity=0.7)

    # test calling folium plotters with FeatureGroup instead of Map, and extra kwargs
    fg = folium.FeatureGroup(name="legend name", show=True)
    gm = ox.plot_graph_folium(G, graph_map=fg)
    assert isinstance(gm, folium.FeatureGroup)

    rm = ox.plot_route_folium(G, route, route_map=fg, tooltip="x")
    assert isinstance(rm, folium.FeatureGroup)
    def get_graph(self):
        self.map = ox.graph_from_address(central_address, distance=3000, network_type='bike')

        # Intialize all frequencies to 0 
        for e in self.map.edges:
            self.map.edges[e]['count'] = 0
        
        for n in self.map.nodes:
            self.map.nodes[n]['count'] = 0
Exemple #22
0
def test_get_network_methods():

    # graph from bounding box
    _ = ox.utils_geo.bbox_from_point(location_point,
                                     project_utm=True,
                                     return_crs=True)
    north, south, east, west = ox.utils_geo.bbox_from_point(location_point,
                                                            dist=500)
    G = ox.graph_from_bbox(north, south, east, west, network_type="drive")
    G = ox.graph_from_bbox(north,
                           south,
                           east,
                           west,
                           network_type="drive_service",
                           truncate_by_edge=True)

    # truncate graph by bounding box
    north, south, east, west = ox.utils_geo.bbox_from_point(location_point,
                                                            dist=400)
    G = ox.truncate.truncate_graph_bbox(G, north, south, east, west)

    # graph from address
    G = ox.graph_from_address(address=address,
                              dist=500,
                              dist_type="bbox",
                              network_type="bike")

    # graph from list of places
    G = ox.graph_from_place([place1],
                            network_type="drive",
                            clean_periphery=False)

    # graph from polygon
    G = ox.graph_from_polygon(polygon,
                              network_type="walk",
                              truncate_by_edge=True)

    # test custom query filter
    cf = (
        '["highway"]'
        '["area"!~"yes"]'
        '["highway"!~"motor|proposed|construction|abandoned|platform|raceway"]'
        '["foot"!~"no"]'
        '["service"!~"private"]'
        '["access"!~"private"]')
    G = ox.graph_from_point(location_point,
                            dist=500,
                            custom_filter=cf,
                            dist_type="bbox",
                            network_type="all")

    G = ox.graph_from_point(
        location_point,
        dist=500,
        dist_type="network",
        network_type="all_private",
    )
Exemple #23
0
def test_routing():

    G = ox.graph_from_address(address=address,
                              dist=500,
                              dist_type="bbox",
                              network_type="bike")

    # give each node a random elevation then calculate edge grades
    randm = np.random.random(size=len(G))
    elevs = {n: e for n, e in zip(G.nodes(), randm)}
    nx.set_node_attributes(G, name="elevation", values=elevs)
    G = ox.add_edge_grades(G, add_absolute=True)

    # give each edge speed and travel time attributes
    G = ox.add_edge_speeds(G)
    G = ox.add_edge_speeds(G, hwy_speeds={"motorway": 100})
    G = ox.add_edge_travel_times(G)

    orig_node = list(G.nodes())[5]
    dest_node = list(G.nodes())[-5]
    orig_pt = (G.nodes[orig_node]["y"], G.nodes[orig_node]["x"])
    dest_pt = (G.nodes[dest_node]["y"], G.nodes[dest_node]["x"])
    route = ox.shortest_path(G, orig_node, dest_node, weight="travel_time")

    attributes = ox.utils_graph.get_route_edge_attributes(G, route)
    attributes = ox.utils_graph.get_route_edge_attributes(
        G, route, "travel_time")

    fig, ax = ox.plot_graph_route(G, route, save=True)

    fig, ax = ox.plot_graph_route(G, route, save=True)

    # test multiple routes
    routes = ox.k_shortest_paths(G,
                                 orig_node,
                                 dest_node,
                                 k=2,
                                 weight="travel_time")
    fig, ax = ox.plot_graph_routes(G, list(routes))

    # test folium with keyword arguments to pass to folium.PolyLine
    gm = ox.plot_graph_folium(G,
                              popup_attribute="name",
                              color="#333333",
                              weight=5,
                              opacity=0.7)
    rm = ox.plot_route_folium(G, route, color="#cc0000", weight=5, opacity=0.7)

    # test calling folium plotters with FeatureGroup instead of Map, and extra kwargs
    fg = folium.FeatureGroup(name="legend name", show=True)
    gm = ox.plot_graph_folium(G, graph_map=fg)
    assert isinstance(gm, folium.FeatureGroup)

    rm = ox.plot_route_folium(G, route, route_map=fg, tooltip="x")
    assert isinstance(rm, folium.FeatureGroup)
Exemple #24
0
def plot1(location, number):
    place = location
    k = number
    G = ox.graph_from_address(place, network_type='drive')
    ox.plot_graph(G,
                  save=True,
                  file_format='png',
                  filename='temp2',
                  show=False)
    im = Image.open('images/temp2.png')
    im.save('snow/static/snow/images/temp1.png', 'png')
def network_from_location(location=None, is_place=False, **kwargs):
    """
    Load road-network-data from OpenStreetMap (OSM) via OSMnx.

    The network structure will be simplified by default, see:
    https://github.com/gboeing/osmnx-examples/blob/master/notebooks/04-simplify-graph-consolidate-nodes.ipynb
    """
    if not location:
        location = "TU Berlin, Berlin, Deutschland"
    if is_place:
        return ox.graph_from_place(location, **kwargs)
    return ox.graph_from_address(location, **kwargs)
Exemple #26
0
def process_file(data, plot_file_type, short_distance_edge_color,
                 long_distance_edge_color, size):
    if size == 'S':
        plot_figure_height = 5
        plot_figure_width = 5
        plot_edge_line_width = 1.25
        font_size = 64
        distance_from_top = 12.5
    elif size == 'M':
        plot_figure_height = 10
        plot_figure_width = 10
        plot_edge_line_width = 2.5
        font_size = 128
        distance_from_top = 25

    else:
        plot_figure_height = 40
        plot_figure_width = 40
        plot_edge_line_width = 10
        font_size = 512
        distance_from_top = 100
    for city in data:
        g = ox.graph_from_address(city.city,
                                  distance=ADDRESS_DISTANCE,
                                  distance_type=ADDRESS_DISTANCE_TYPE,
                                  network_type=ADDRESS_NETWORK_TYPE,
                                  simplify=True,
                                  name=city.city)

        ec = [
            long_distance_edge_color
            if data['length'] >= 100 else short_distance_edge_color
            for u, v, key, data in g.edges(keys=True, data=True)
        ]

        ox.plot_graph(g,
                      bgcolor=PLOT_BACKGROUND_COLOR,
                      node_size=PLOT_NODE_SIZE,
                      fig_height=plot_figure_height,
                      fig_width=plot_figure_width,
                      file_format=plot_file_type,
                      dpi=PLOT_DPI,
                      filename=city.city,
                      save=True,
                      edge_color=ec,
                      edge_linewidth=plot_edge_line_width,
                      show=False)

        img = get_image_file_name(city.city, plot_file_type)

        save_images_with_name(city.city, img, FILL, plot_file_type, font_size,
                              distance_from_top, size)
Exemple #27
0
    def __init__(self,
                 place,
                 scale=1.0,
                 transit=None,
                 distance=10000,
                 buffer=2000,
                 type='drive'):
        self.vehicle_size = scale
        self.place = place
        self.transit = transit
        self.id = place.lower().replace(' ', '_')
        self.place_meta = lookup_place(place)
        xmin, xmax, ymin, ymax = [
            float(p) for p in self.place_meta['boundingbox']
        ]  # lat lon
        self.bbox = (xmin, ymin, xmax, ymax)

        self.fname = '{}_{}_{}_{}'.format(self.id, type, distance, buffer)
        if os.path.exists(os.path.join(ox.settings.data_folder, self.fname)):
            logger.info('Loading existing network')
            G = ox.load_graphml(self.fname)
        else:
            # the first search result isn't always what we want
            # so keep trying until we find something that clicks
            # see: <https://github.com/gboeing/osmnx/issues/16>
            # a more likely problem is that a place is returned as a point
            # rather than a shape, so we fall back to `graph_from_address`
            try:
                logger.info('Downloading network')
                G = ox.graph_from_place(place,
                                        network_type=type,
                                        simplify=True,
                                        buffer_dist=buffer,
                                        truncate_by_edge=True)
            except ValueError:
                print('Shape was not found for "{}"'.format(place))
                print('Falling back to address search at distance={}'.format(
                    distance))
                G = ox.graph_from_address(place,
                                          network_type=type,
                                          simplify=True,
                                          distance=distance + buffer,
                                          truncate_by_edge=True)
            G = ox.project_graph(G)
            ox.save_graphml(G, filename=self.fname)

        crs = G.graph['crs']
        self.utm_proj = pyproj.Proj(crs, preserve_units=True)
        self.network = G

        self._prepare_network()
        self.router = Router(self)
Exemple #28
0
def generate_graph_from_address(address: str, distance: int):
    """Prüft, ob bereits ein Graph zu der angegebenen Adresse existiert und holt diesen oder erstellt diesen je nachdem.
    Die distance bestimmt die Größe des Ergebnisgraphen.
    """
    key = address + str(distance) + '-add'
    if graphs.get(key, "-1") != "-1":
        print("**** graph fetched ****")
        return graphs[key]
    else:
        G = ox.graph_from_address(address=address, distance=distance)
        graphs[key] = G
        print("**** graph created ****")
        return G
Exemple #29
0
def graph_from_address_wrapper(address,
                               distance=1000,
                               distance_type='bbox',
                               network_type='drive',
                               fig_height=5,
                               node_size=0,
                               color='#999999'):
    g = ox.graph_from_address(address=address,
                              distance=distance,
                              distance_type=distance_type,
                              network_type=network_type)

    project_and_plot(g, fig_height, node_size)
Exemple #30
0
def test_get_network_methods():

    # graph from bounding box
    north, south, east, west = ox.utils_geo.bbox_from_point(location_point,
                                                            dist=500)
    G = ox.graph_from_bbox(north, south, east, west, network_type="drive")
    G = ox.graph_from_bbox(north,
                           south,
                           east,
                           west,
                           network_type="drive_service",
                           truncate_by_edge=True)

    # graph from address
    G = ox.graph_from_address(address=address,
                              dist=500,
                              dist_type="bbox",
                              network_type="bike")

    # graph from list of places
    G = ox.graph_from_place([place1],
                            network_type="drive",
                            clean_periphery=False)

    # graph from polygon
    G = ox.graph_from_polygon(polygon,
                              network_type="walk",
                              truncate_by_edge=True)

    # test custom query filter
    cf = (
        '["area"!~"yes"]'
        '["highway"!~"motor|proposed|construction|abandoned|platform|raceway"]'
        '["foot"!~"no"]'
        '["service"!~"private"]'
        '["access"!~"private"]')
    G = ox.graph_from_point(location_point,
                            dist=500,
                            custom_filter=cf,
                            dist_type="bbox",
                            network_type="all")

    # test custom settings
    cs = '[out:json][timeout:180][date:"2019-10-28T19:20:00Z"]'
    G = ox.graph_from_point(
        location_point,
        dist=500,
        custom_settings=cs,
        dist_type="network",
        network_type="all_private",
    )
Exemple #31
0
def test_elevation():

    G = ox.graph_from_address(address=address, dist=500, dist_type="bbox", network_type="bike")
    rasters = list(Path("tests/input_data").glob("elevation*.tif"))

    # add node elevations from a single raster file (some nodes will be null)
    G = ox.elevation.add_node_elevations_raster(G, rasters[0], cpus=1)

    # add node elevations from multiple raster files
    G = ox.elevation.add_node_elevations_raster(G, rasters)
    assert pd.notnull(pd.Series(dict(G.nodes(data="elevation")))).all()

    # add edge grades and their absolute values
    G = ox.add_edge_grades(G, add_absolute=True)
Exemple #32
0
def test_routing_folium():

    # calculate shortest path and plot as static image and leaflet web map
    import networkx as nx
    G = ox.graph_from_address('398 N. Sicily Pl., Chandler, Arizona', distance=800, network_type='drive')
    origin = (33.307792, -111.894940)
    destination = (33.312994, -111.894998)
    origin_node = ox.get_nearest_node(G, origin)
    destination_node = ox.get_nearest_node(G, destination, method='euclidean')
    route = nx.shortest_path(G, origin_node, destination_node)

    attributes = ox.get_route_edge_attributes(G, route, 'length')

    fig, ax = ox.plot_graph_route(G, route, save=True, filename='route', file_format='png')
    fig, ax = ox.plot_graph_route(G, route, origin_point=origin, destination_point=destination,
                                  save=True, filename='route', file_format='png')

    # test multiple routes
    fig, ax = ox.plot_graph_routes(G, [route, route])

    graph_map = ox.plot_graph_folium(G, popup_attribute='name')
    route_map = ox.plot_route_folium(G, route)