Exemple #1
0
def batch_download(inventory_df, download_dir, uname, pword, concurrent=2):

    from ost import Sentinel1_Scene as S1Scene
    from ost.helpers import onda

    # create list of scenes
    scenes = inventory_df['identifier'].tolist()

    check, i = False, 1
    while check is False and i <= 10:

        download_list = []

        for scene_id in scenes:

            scene = S1Scene(scene_id)
            filepath = scene._download_path(download_dir, True)

            try:
                uuid = (inventory_df['uuid'][inventory_df['identifier'] ==
                                             scene_id].tolist())
            except KeyError:
                uuid = scene.ondadias_uuid(
                    opener=onda.connect(uname=uname, pword=pword))

            if os.path.exists('{}.downloaded'.format(filepath)):
                print(' INFO: {} is already downloaded.'.format(
                    scene.scene_id))
            else:
                # create list objects for download
                download_list.append([uuid[0], filepath, uname, pword])

        if download_list:
            pool = multiprocessing.Pool(processes=concurrent)
            pool.map(s1_download, download_list)

        downloaded_scenes = glob.glob(
            opj(download_dir, 'SAR', '*', '20*', '*', '*', '*.zip.downloaded'))

        if len(inventory_df['identifier'].tolist()) == len(downloaded_scenes):
            print(' INFO: All products are downloaded.')
            check = True
        else:
            check = False
            for scene in scenes:

                scene = S1Scene(scene)
                filepath = scene._download_path(download_dir)

                if os.path.exists('{}.downloaded'.format(filepath)):
                    scenes.remove(scene.scene_id)

        i += 1
Exemple #2
0
def batch_download(inventory_df, download_dir, uname, pword, concurrent=10):

    from ost import Sentinel1Scene as S1Scene

    # create list with scene ids to download
    scenes = inventory_df['identifier'].tolist()

    asf_list = []
    for scene_id in scenes:

        # initialize scene instance and get destination filepath
        scene = S1Scene(scene_id)
        file_path = scene.download_path(download_dir, True)

        # check if already downloaded
        if file_path.with_suffix('.downloaded').exists():
            logger.info(f'{scene.scene_id} has been already downloaded.')
            continue

        # append to list
        asf_list.append([scene.asf_url(), file_path, uname, pword])

    # if list is not empty, do parallel download
    check_counter = 0
    if asf_list:
        executor = Executor(max_workers=concurrent,
                            executor='concurrent_processes')

        for task in executor.as_completed(
                func=asf_download_parallel,
                iterable=asf_list,
                fargs=[]
        ):
            task.result()
            check_counter += 1

    # if all have been downloaded then we are through
    if len(inventory_df['identifier'].tolist()) == check_counter:
        logger.info('All products are downloaded.')
    # else we
    else:
        for scene in scenes:
            # we check if outputfile exists...
            scene = S1Scene(scene)
            file_path = scene.download_path(download_dir)
            if file_path.with_suffix('.downloaded').exists():
                # ...and remove from list of scenes to download
                scenes.remove(scene.scene_id)
            else:
                raise DownloadError(
                    'ASF download is incomplete or has failed. Try to re-run.'
                )
Exemple #3
0
def batch_download(inventory_df, download_dir, uname, pword, concurrent=2):

    from ost import Sentinel1Scene as S1Scene
    from ost.helpers import onda

    # create list of scenes
    scenes = inventory_df['identifier'].tolist()

    check, i = False, 1
    while check is False and i <= 10:

        download_list = []

        for scene_id in scenes:

            scene = S1Scene(scene_id)
            file_path = scene.download_path(download_dir, True)

            try:
                uuid = (inventory_df['uuid'][inventory_df['identifier'] ==
                                             scene_id].tolist())
            except KeyError:
                uuid = scene.ondadias_uuid(
                    opener=onda.connect(uname=uname, pword=pword))

            if file_path.with_suffix('.downloaded').exists():
                logger.info(f'{scene.scene_id} is already downloaded.')
            else:
                # create list objects for download
                download_list.append([uuid[0], file_path, uname, pword])

        if download_list:
            pool = multiprocessing.Pool(processes=concurrent)
            pool.map(onda_download, download_list)

        downloaded_scenes = list(download_dir.glob('**/*.downloaded'))

        if len(inventory_df['identifier'].tolist()) == len(downloaded_scenes):
            logger.info('All products are downloaded.')
            check = True
        else:
            check = False
            for scene in scenes:

                scene = S1Scene(scene)
                file_path = scene.download_path(download_dir)

                if file_path.with_suffix('.downloaded'):
                    scenes.remove(scene.scene_id)

        i += 1
Exemple #4
0
def _execute_batch_burst_ard(burst, processing_dir, download_dir, data_mount,
                             ard_parameters):
    index, burst = burst
    resolution = ard_parameters['resolution']
    product_type = ard_parameters['product_type']
    speckle_filter = ard_parameters['speckle_filter']
    ls_mask_create = ard_parameters['ls_mask_create']
    to_db = ard_parameters['to_db']
    dem = ard_parameters['dem']

    logger.debug('INFO: Entering burst {} at date {}.'.format(
        burst.BurstNr, burst.Date))
    master_scene = S1Scene(burst.SceneID)

    # get path to file
    master_file = master_scene.get_path(download_dir, data_mount)
    # get subswath
    subswath = burst.SwathID
    # get burst number in file
    master_burst_nr = burst.BurstNr
    # create a fileId
    master_id = '{}_{}'.format(burst.Date, burst.bid)
    # create out folder
    out_dir = '{}/{}/{}'.format(processing_dir, burst.bid, burst.Date)
    os.makedirs(out_dir, exist_ok=True)

    # check if already processed
    if os.path.isfile(opj(out_dir, '.processed')):
        logger.debug('INFO: Burst {} from {} already processed'.format(
            burst.bid, burst.Date))
        return_code = 0
        return return_code
    with TemporaryDirectory() as temp_dir:
        try:
            return_code = burst_to_ard.burst_to_ard(
                master_file=master_file,
                swath=subswath,
                master_burst_nr=burst['BurstNr'],
                master_burst_id=master_id,
                master_burst_poly=burst['geometry'],
                out_dir=out_dir,
                out_prefix=master_id,
                temp_dir=temp_dir,
                resolution=resolution,
                product_type=product_type,
                speckle_filter=speckle_filter,
                to_db=to_db,
                ls_mask_create=ls_mask_create,
                dem=dem,
            )
        except Exception as e:
            raise e
        if return_code != 0:
            raise RuntimeError('Something went wrong with the GPT processing! '
                               'with return code: %s' % return_code)
    return return_code
Exemple #5
0
def _prepare_scenes_to_dl(inventory_df, download_dir, uname, pword):
    logger.debug(
        'INFO: Getting the storage status (online/onTape) of each scene.')
    logger.debug('INFO: This may take a while.')
    # this function does not just check,
    # but it already triggers the production of the S1 scene
    inventory_df['pepsStatus'], inventory_df['pepsUrl'] = (zip(*[
        S1Scene(product).peps_online_status(uname, pword)
        for product in inventory_df.identifier.tolist()
    ]))

    # as long as there are any scenes left for downloading, loop
    while len(inventory_df[inventory_df['pepsStatus'] != 'downloaded']) > 0:
        # excluded downlaoded scenes
        inventory_df = inventory_df[inventory_df['pepsStatus'] != 'downloaded']
        # recheck for status
        inventory_df['pepsStatus'], inventory_df['pepsUrl'] = (zip(*[
            S1Scene(product).peps_online_status(uname, pword)
            for product in inventory_df.identifier.tolist()
        ]))

        # if all scenes to download are on Tape, we wait for a minute
        if len(inventory_df[inventory_df['pepsStatus'] == 'online']) == 0:
            logger.debug(
                'INFO: Imagery still on tape, we will wait for 1 minute '
                'and try again.')
            time.sleep(60)
    # create the peps_list for parallel download
    download_list = []
    for index, row in (
            inventory_df[inventory_df['pepsStatus'] == 'online'].iterrows()):

        # get scene identifier
        scene_id = row.identifier
        # construct download path
        scene = S1Scene(scene_id)
        download_path = scene._download_path(download_dir, True)
        # put all info to the peps_list for parallelised download
        download_list.append([
            inventory_df.pepsUrl[inventory_df.identifier == scene_id].tolist()
            [0], download_path, uname, pword
        ])
    return download_list
Exemple #6
0
def batch_download(inventory_df, download_dir, uname, pword, concurrent=10):

    # create list of scenes
    scenes = inventory_df['identifier'].tolist()
    # print(scenes)
    check, i = False, 1
    while check is False and i <= 10:

        asf_list = []

        for scene_id in scenes:

            scene = S1Scene(scene_id)
            filepath = scene._download_path(download_dir, True)

            if os.path.exists('{}.downloaded'.format(filepath)):
                print(' INFO: {} is already downloaded.'
                      .format(scene.scene_id))
            else:
                asf_list.append([scene.asf_url(), filepath,
                                 uname, pword])

        if asf_list:
            pool = multiprocessing.Pool(processes=concurrent)
            pool.map(s1_download, asf_list)

        downloaded_scenes = glob.glob(
            opj(download_dir, 'SAR', '*', '20*', '*', '*',
                '*.zip.downloaded'))

        if len(inventory_df['identifier'].tolist()) == len(downloaded_scenes):
            check = True
        else:
            check = False
            for scene in scenes:

                scene = S1Scene(scene)
                filepath = scene._download_path(download_dir)

                if os.path.exists('{}.downloaded'.format(filepath)):
                    scenes.remove(scene.scene_id)

        i += 1
Exemple #7
0
def _check_downloaded_files(inventory_df, download_dir):
    # routine to check if the file has been downloaded
    for index, row in (
            inventory_df[inventory_df['pepsStatus'] == 'online'].iterrows()):
        # get scene identifier
        scene_id = row.identifier
        # construct download path
        scene = S1Scene(scene_id)
        download_path = scene._download_path(download_dir)
        if os.path.exists(download_path):
            inventory_df.at[index, 'pepsStatus'] = 'downloaded'
Exemple #8
0
class TestS1Scene(unittest.TestCase):
    
    scene_id = ['S1A_IW_GRDH_1SDV_20191104T170638_20191104T170703_029764_036486_DB88']
    s1 = S1Scene(self.scene_id)
    
    def test_attributes(self):
        
        self.assertIs(self.s1.scene_id, self.scene_id)
        self.assertIs(self.s1.mission_id, 'S1A')
        

    def test_paths(self):
Exemple #9
0
def get_scene_path(scene_id):

    scene = S1Scene(scene_id)

    if scene.creodias_path():
        path = scene.creodias_path()
    elif scene.mundi_path():
        path = scene.mundi_path()
    elif scene.onda_path():
        path = scene.onda_path()
    elif scene.download_path():
        path = scene.download_path()

    return path
Exemple #10
0
def _check_downloaded_files(inventory_df, download_dir, downloaded_scenes,
                            missing_scenes):
    from ost import Sentinel1Scene as S1Scene
    scenes = inventory_df['identifier'].tolist()
    if len(inventory_df['identifier'].tolist()) == len(
            downloaded_scenes) and not missing_scenes:
        logger.debug('INFO: All products are downloaded.')
        check = True
    else:
        check = False
    for scene in scenes:
        scene = S1Scene(scene)
        filepath = scene._download_path(download_dir)
        if os.path.exists('{}.downloaded'.format(filepath)):
            scenes.remove(scene.scene_id)
    return check
Exemple #11
0
def _prepare_scenes_to_dl(inventory_df, download_dir, uname, pword):
    from ost import Sentinel1Scene as S1Scene
    scenes = inventory_df['identifier'].tolist()
    download_list = []
    for scene_id in scenes:
        scene = S1Scene(scene_id)
        filepath = scene._download_path(download_dir, True)
        try:
            uuid = (inventory_df['uuid'][inventory_df['identifier'] ==
                                         scene_id].tolist())
        except Exception as e:
            logger.debug(e)
            uuid = scene.scihub_uuid(
                connect(base_url='https://scihub.copernicus.eu/apihub/',
                        uname=uname,
                        pword=pword))
        if os.path.exists('{}.downloaded'.format(filepath)):
            logger.debug('INFO: {} is already downloaded.'.format(
                scene.scene_id))
        else:
            # Create list objects for download
            download_list.append([uuid, filepath, uname, pword])
    return download_list
Exemple #12
0
def batch_download(inventory_df, download_dir, uname, pword, concurrent=10):

    from ost import Sentinel1Scene as S1Scene
    logger.info('Getting the storage status (online/onTape) of each scene.')
    logger.info('This may take a while.')

    # this function does not just check,
    # but it already triggers the production of the S1 scene
    inventory_df['pepsStatus'], inventory_df['pepsUrl'] = (zip(*[
        S1Scene(product).peps_online_status(uname, pword)
        for product in inventory_df.identifier.tolist()
    ]))

    # as long as there are any scenes left for downloading, loop
    while len(inventory_df[inventory_df['pepsStatus'] != 'downloaded']) > 0:

        # excluded downlaoded scenes
        inventory_df = inventory_df[inventory_df['pepsStatus'] != 'downloaded']

        # recheck for status
        inventory_df['pepsStatus'], inventory_df['pepsUrl'] = (zip(*[
            S1Scene(product).peps_online_status(uname, pword)
            for product in inventory_df.identifier.tolist()
        ]))

        # if all scenes to download are on Tape, we wait for a minute
        if len(inventory_df[inventory_df['pepsStatus'] == 'online']) == 0:
            logger.info('Imagery still on tape, we will wait for 1 minute '
                        'and try again.')
            time.sleep(60)

        # else we start downloading
        else:

            # create the peps_list for parallel download
            peps_list = []
            for index, row in (inventory_df[inventory_df['pepsStatus'] ==
                                            'online'].iterrows()):

                # get scene identifier
                scene_id = row.identifier
                # construct download path
                scene = S1Scene(scene_id)
                download_path = scene.download_path(download_dir, True)
                # put all info to the peps_list for parallelised download
                peps_list.append([
                    inventory_df.pepsUrl[inventory_df.identifier ==
                                         scene_id].tolist()[0], download_path,
                    uname, pword
                ])

            # parallelised download
            pool = multiprocessing.Pool(processes=concurrent)
            pool.map(peps_download, peps_list)

            # routine to check if the file has been downloaded
            for index, row in (inventory_df[inventory_df['pepsStatus'] ==
                                            'online'].iterrows()):

                # get scene identifier
                scene_id = row.identifier
                # construct download path
                scene = S1Scene(scene_id)
                download_path = scene.download_path(download_dir)
                if download_path.exists():
                    inventory_df.at[index, 'pepsStatus'] = 'downloaded'
Exemple #13
0
def burst_inventory(inventory_df, outfile, download_dir=os.getenv('HOME'),
                    data_mount='/eodata', uname=None, pword=None):
    '''Creates a Burst GeoDataFrame from an OST inventory file

    Args:

    Returns:


    '''
    # create column names for empty data frame
    column_names = ['SceneID', 'Track', 'Direction', 'Date', 'SwathID',
                    'AnxTime', 'BurstNr', 'geometry']

    # crs for empty dataframe
    crs = {'init': 'epsg:4326', 'no_defs': True}
    # create empty dataframe
    gdf_full = gpd.GeoDataFrame(columns=column_names, crs=crs)
    # uname, pword = scihub.askScihubCreds()

    for scene_id in inventory_df.identifier:

        # read into S1scene class
        scene = S1Scene(scene_id)

        print(' INFO: Getting burst info from {}.'.format(scene.scene_id))
        
        # get orbit direction
        orbit_direction = inventory_df[
            inventory_df.identifier == scene_id].orbitdirection.values[0]

        filepath = scene.get_path(download_dir, data_mount)
        if not filepath:
            print(' INFO: Retrieving burst info from scihub'
                  ' (need to download xml files)')
            if not uname and not pword:
                uname, pword = scihub.ask_credentials()
                
            opener = scihub.connect(uname=uname, pword=pword)
            if scene.scihub_online_status(opener) is False:
                print(' INFO: Product needs to be online'
                      ' to create a burst database.')
                print(' INFO: Download the product first and '
                      ' do the burst list from the local data.')
            else:
                single_gdf = scene._scihub_annotation_get(uname, pword)
        elif filepath[-4:] == '.zip':
            single_gdf = scene._zip_annotation_get(download_dir, data_mount)
        elif filepath[-5:] == '.SAFE':
            single_gdf = scene._safe_annotation_get(download_dir, data_mount)
           

        # add orbit direction
        single_gdf['Direction'] = orbit_direction

        # append
        gdf_full = gdf_full.append(single_gdf)


    gdf_full = gdf_full.reset_index(drop=True)

    for i in gdf_full['AnxTime'].unique():

        # get similar burst times
        idx = gdf_full.index[(gdf_full.AnxTime >= i - 1) &
                             (gdf_full.AnxTime <= i + 1) &
                             (gdf_full.AnxTime != i)].unique().values

        # reset all to first value
        for j in idx:
            gdf_full.at[j, 'AnxTime'] = i

    # create the acrual burst id
    gdf_full['bid'] = gdf_full.Direction.str[0] + \
        gdf_full.Track.astype(str) + '_' + \
        gdf_full.SwathID.astype(str) + '_' + \
        gdf_full.AnxTime.astype(str)

    # save file to out
    gdf_full['Date'] = gdf_full['Date'].astype(str)
    gdf_full['BurstNr'] = gdf_full['BurstNr'].astype(str)
    gdf_full['AnxTime'] = gdf_full['AnxTime'].astype(str)
    gdf_full['Track'] = gdf_full['Track'].astype(str)
    gdf_full.to_file(outfile)
    
    return gdf_full
Exemple #14
0
def burst_to_ard_batch(burst_inventory, download_dir, processing_dir, temp_dir,
                       ard_parameters):
    '''

    '''

    resolution = ard_parameters['resolution']
    border_noise = ard_parameters['border_noise']
    prdType = ard_parameters['product_type']
    spkFlt = ard_parameters['speckle_filter']
    ls_mask = ard_parameters['ls_mask']
    to_db = ard_parameters['to_db']
    dem = ard_parameters['dem']
    coherence = ard_parameters['coherence']
    polarimetry = ard_parameters['polarimetry']

    for burst in burst_inventory.bid.unique():

        # create a list of dates over which we loop
        dates = burst_inventory.Date[burst_inventory.bid ==
                                     burst].sort_values().tolist()

        # loop through dates
        for idx, date in enumerate(dates):

            # get master date
            master_date = dates[idx]
            end = False

            # try to get slave date
            try:
                slave_date = dates[
                    idx + 1]  # here we will jave problems for the last one
            except:
                print(' Reached the end of the time-series')

            # read master burst
            master_burst = burst_inventory[
                (burst_inventory.Date == master_date)
                & (burst_inventory.bid == burst)]

            master_scene = S1Scene(master_burst.SceneID.values[0])

            # get path to file
            master_file = master_scene.get_scene_path()
            # get subswath
            subswath = master_burst.SwathID.values[0]
            # get burst number in file
            master_burst_nr = master_burst.BurstNr.values[0]
            # create a fileId
            master_id = '{}_{}'.format(master_date, master_burst.bid.values[0])
            # create logFile
            logFile = '{}.errLog'.format(master_id)

            # create out folder
            out = '{}/{}/{}'.format(processing_dir, burst, date)
            os.makedirs(out, exist_ok=True)

            if end is True:
                coherence = False
            else:
                # read slave burst
                slave_burst = burst_inventory[
                    (burst_inventory.Date == slave_date)
                    & (burst_inventory.bid == burst)]

                slave_scene = S1Scene(slave_burst.SceneID.values[0])

                # get path to slave file
                slave_file = slave_scene.get_scene_path()

                # burst number in slave file (subswath is same)
                slave_burst_nr = slave_burst.BurstNr.values[0]

                # outFile name
                slave_id = '{}_{}'.format(slave_date,
                                          slave_burst.bid.values[0])

            # run routine
            burst2Ard.slcBurst2CohPolArd(master_file, slave_file, logFile,
                                         subswath, master_burst_nr,
                                         slave_burst_nr, out, master_id,
                                         slave_id, temp_dir, prdType,
                                         resolution)
Exemple #15
0
def burst_to_ard_batch(burst_inventory,
                       download_dir,
                       processing_dir,
                       temp_dir,
                       ard_parameters,
                       data_mount='/eodata'):
    '''Handles the batch processing of a OST complinat burst inventory file

    Args:
        burst_inventory (GeoDataFrame):
        download_dir (str):
        processing_dir (str):
        temp_dir (str):
        ard_parameters (dict):

    '''

    resolution = ard_parameters['resolution']
    # border_noise = ard_parameters['border_noise']
    product_type = ard_parameters['product_type']
    speckle_filter = ard_parameters['speckle_filter']
    ls_mask_create = ard_parameters['ls_mask_create']
    to_db = ard_parameters['to_db']
    dem = ard_parameters['dem']
    coherence = ard_parameters['coherence']
    polarimetry = ard_parameters['polarimetry']
    pol_speckle_filter = ard_parameters['pol_speckle_filter']

    for burst in burst_inventory.bid.unique():  # ***

        # create a list of dates over which we loop
        dates = burst_inventory.Date[burst_inventory.bid ==
                                     burst].sort_values().tolist()

        # loop through dates
        for idx, date in enumerate(dates):  # ******

            print(' INFO: Entering burst {} at date {}.'.format(burst, date))
            # get master date
            master_date = dates[idx]
            # we set this for handling the end of the time-series
            end = False
            coherence = ard_parameters['coherence']

            # try to get slave date
            try:
                slave_date = dates[idx + 1]  # last burst in timeseries?
            except IndexError:
                end = True
                print(' INFO: Reached the end of the time-series.'
                      ' Therefore no coherence calculation is done.')
            else:
                end = False

            # read master burst
            master_burst = burst_inventory[
                (burst_inventory.Date == master_date)
                & (burst_inventory.bid == burst)]

            master_scene = S1Scene(master_burst.SceneID.values[0])

            # get path to file
            master_file = master_scene.get_path(download_dir, data_mount)
            # get subswath
            subswath = master_burst.SwathID.values[0]
            # get burst number in file
            master_burst_nr = master_burst.BurstNr.values[0]
            # create a fileId
            master_id = '{}_{}'.format(master_date, master_burst.bid.values[0])

            # create out folder
            out_dir = '{}/{}/{}'.format(processing_dir, burst, date)
            os.makedirs(out_dir, exist_ok=True)

            # check if already processed
            if os.path.isfile(opj(out_dir, '.processed')):
                print(' INFO: Burst {} from {} already processed'.format(
                    burst, date))
                # return_code = 0
            else:
                if end is True:
                    coherence = False
                    slave_file, slave_burst_nr, slave_id = None, None, None
                else:
                    # read slave burst
                    slave_burst = burst_inventory[
                        (burst_inventory.Date == slave_date)
                        & (burst_inventory.bid == burst)]

                    slave_scene = S1Scene(slave_burst.SceneID.values[0])

                    # get path to slave file
                    slave_file = slave_scene.get_path(download_dir, data_mount)

                    # burst number in slave file (subswath is same)
                    slave_burst_nr = slave_burst.BurstNr.values[0]

                    # outfile name
                    slave_id = '{}_{}'.format(slave_date,
                                              slave_burst.bid.values[0])

                # run routine
                burst_to_ard.burst_to_ard(
                    master_file=master_file,
                    swath=subswath,
                    master_burst_nr=master_burst_nr,
                    master_burst_id=master_id,
                    out_dir=out_dir,
                    temp_dir=temp_dir,
                    slave_file=slave_file,
                    slave_burst_nr=slave_burst_nr,
                    slave_burst_id=slave_id,
                    coherence=coherence,
                    polarimetry=polarimetry,
                    pol_speckle_filter=pol_speckle_filter,
                    resolution=resolution,
                    product_type=product_type,
                    speckle_filter=speckle_filter,
                    to_db=to_db,
                    ls_mask_create=ls_mask_create,
                    dem=dem,
                    remove_slave_import=False)
Exemple #16
0
def burst_inventory(inventory_df,
                    download_dir=os.getenv('HOME'),
                    uname=None,
                    pword=None):
    '''Creates a Burst GeoDataFrame from an OST inventory file

    Args:

    Returns:


    '''
    # create column names for empty data frame
    column_names = [
        'SceneID', 'Track', 'Direction', 'Date', 'SwathID', 'AnxTime',
        'BurstNr', 'geometry'
    ]

    # crs for empty dataframe
    crs = {'init': 'epsg:4326', 'no_defs': True}
    # create empty dataframe
    gdf_full = gpd.GeoDataFrame(columns=column_names, crs=crs)
    # uname, pword = scihub.askScihubCreds()

    for scene_id in inventory_df.identifier:

        # read into S1scene class
        scene = S1Scene(scene_id)

        # get orbit direction
        orbit_direction = inventory_df[inventory_df.identifier ==
                                       scene_id].orbitdirection.values[0]

        # check different data storages
        if os.path.exists(scene.download_path(download_dir)):
            print(' Getting burst info from downloaded files')
            single_gdf = scene.download_annotation_get(download_dir)
        elif os.path.exists(scene.creodias_path()):
            print(' Getting burst info from Creodias eodata store')
            single_gdf = scene.creodias_annotation_get()
        else:
            uname, pword = scihub.ask_credentials()
            opener = scihub.connect(uname=uname, pword=pword)
            print(' Getting burst info from scihub'
                  ' (need to download xml files)')
            if scene.scihub_online_status(opener) is False:
                print(' INFO: Product needs to be online'
                      ' to create a burst database.')
                print(' INFO: Download the product first and '
                      ' do the burst list from the local data.')
            else:
                single_gdf = scene.scihub_annotation_get(uname, pword)

        # add orbit direction
        single_gdf['Direction'] = orbit_direction

        # append
        gdf_full = gdf_full.append(single_gdf)

    gdf_full = gdf_full.reset_index(drop=True)

    for i in gdf_full['AnxTime'].unique():

        # get similar burst times
        idx = gdf_full.index[(gdf_full.AnxTime >= i - 1)
                             & (gdf_full.AnxTime <= i + 1) &
                             (gdf_full.AnxTime != i)].unique().values

        # reset all to first value
        for j in idx:
            gdf_full.at[j, 'AnxTime'] = i

    # create the acrual burst id
    gdf_full['bid'] = gdf_full.Direction.str[0] + \
        gdf_full.Track.astype(str) + '_' + \
        gdf_full.SwathID.astype(str) + '_' + \
        gdf_full.AnxTime.astype(str)

    return gdf_full
Exemple #17
0
def batch_download(inventory_df,
                   download_dir,
                   uname,
                   pword,
                   concurrent=2,
                   base_url='https://scihub.copernicus.eu/apihub'):
    """Batch download Sentinel-1 on the basis of an OST inventory GeoDataFrame

    :param inventory_df:
    :param download_dir:
    :param uname:
    :param pword:
    :param concurrent:
    :param base_url:

    :return:
    """
    from ost import Sentinel1Scene as S1Scene
    from ost.helpers import scihub

    if isinstance(download_dir, str):
        download_dir = Path(download_dir)

    # create list of scenes
    scenes = inventory_df['identifier'].tolist()

    check, i = False, 1
    while check is False and i <= 10:

        download_list = []
        for scene_id in scenes:
            scene = S1Scene(scene_id)
            filepath = scene.download_path(download_dir, True)

            try:
                uuid = (inventory_df['uuid'][inventory_df['identifier'] ==
                                             scene_id].tolist())
            except KeyError:
                uuid = [
                    scene.scihub_uuid(
                        connect(uname=uname, pword=pword, base_url=base_url))
                ]

            if Path(f'{filepath}.downloaded').exists():
                logger.debug(f'{scene.scene_id} is already downloaded.')
            else:
                # create list objects for download
                download_list.append(
                    [uuid[0], filepath, uname, pword, base_url])

        if download_list:
            pool = multiprocessing.Pool(processes=concurrent)
            pool.map(s1_download_parallel, download_list)

        downloaded_scenes = list(download_dir.glob('**/*.downloaded'))

        if len(inventory_df['identifier'].tolist()) == len(downloaded_scenes):
            logger.info('All products are downloaded.')
            check = True
        else:
            check = False
            for scene in scenes:

                scene = S1Scene(scene)
                file_path = scene.download_path(download_dir)

                if file_path.with_suffix('.downloaded').exists():
                    scenes.remove(scene.scene_id)

        i += 1
Exemple #18
0
def burst_to_ard_batch(burst_inventory, download_dir, processing_dir,
                       temp_dir, proc_file, data_mount='/eodata', 
                       exec_file=None):
    '''Handles the batch processing of a OST complinat burst inventory file

    Args:
        burst_inventory (GeoDataFrame):
        download_dir (str):
        processing_dir (str):
        temp_dir (str):
        ard_parameters (dict):

    '''

    # load ard parameters
    with open(proc_file, 'r') as ard_file:
        ard_params = json.load(ard_file)['processing parameters']
        ard = ard_params['single ARD']

    for burst in burst_inventory.bid.unique():      # ***

        # create a list of dates over which we loop
        dates = burst_inventory.Date[
                burst_inventory.bid == burst].sort_values().tolist()

        # loop through dates
        for idx, date in enumerate(dates):      # ******

            print(' INFO: Entering burst {} at date {}.'.format(burst, date))
            # get master date
            master_date = dates[idx]
            # we set this for handling the end of the time-series
            end = False
            coherence = ard['coherence']

            # try to get slave date
            try:
                slave_date = dates[idx + 1]    # last burst in timeseries?
            except IndexError:
                end = True
                print(' INFO: Reached the end of the time-series.'
                      ' Therefore no coherence calculation is done.')
            else:
                end = False

            # read master burst
            master_burst = burst_inventory[
                (burst_inventory.Date == master_date) &
                (burst_inventory.bid == burst)]

            master_scene = S1Scene(master_burst.SceneID.values[0])

            # get path to file
            master_file = master_scene.get_path(download_dir, data_mount)
            # get subswath
            subswath = master_burst.SwathID.values[0]
            # get burst number in file
            master_burst_nr = master_burst.BurstNr.values[0]
            # create a fileId
            master_id = '{}_{}'.format(master_date, master_burst.bid.values[0])

            # create out folder
            out_dir = opj(processing_dir, burst, date)
            os.makedirs(out_dir, exist_ok=True)

            # check if already processed
            if os.path.isfile(opj(out_dir, '.processed')):
                print(' INFO: Burst {} from {} already processed'.format(
                      burst, date))
            else:
                
                if end is True:
                    coherence = False
                    slave_file, slave_burst_nr, slave_id = None, None, None
                else:
                    # read slave burst
                    slave_burst = burst_inventory[
                            (burst_inventory.Date == slave_date) &
                            (burst_inventory.bid == burst)]
    
                    slave_scene = S1Scene(slave_burst.SceneID.values[0])
    
                    # get path to slave file
                    slave_file = slave_scene.get_path(download_dir,
                                                      data_mount)
    
                    # burst number in slave file (subswath is same)
                    slave_burst_nr = slave_burst.BurstNr.values[0]
    
                    # outfile name
                    slave_id = '{}_{}'.format(slave_date,
                                              slave_burst.bid.values[0])
    
                # just write command into a textfile
                if exec_file:
                    # remove older files in case they exist
                    if os.path.isfile(exec_file):
                        os.remove(exec_file)
                    # construct command arguments
                    args = ('-m {} -ms {} -mn {} -mi {} -p {} -o {} -t {} '
                            '-s {} -sn {} -si {} -c {} -r {}').format(
                                  master_file, subswath, master_burst_nr, master_id, 
                                  proc_file, out_dir, temp_dir, 
                                  slave_file, slave_burst_nr, slave_id, 
                                  coherence, False)                                
                    
                    # get path to graph
                    rootpath = imp.find_module('ost')[1]
                    python_exe = opj(rootpath, 's1', 'burst_to_ard.py')
                    with open(exec_file, 'a') as exe:
                        exe.write('{} {} \n'.format(python_exe, args))
                
                # run the command      
                else:
                    # run routine
                    burst_to_ard.burst_to_ard(
                         master_file=master_file,
                         swath=subswath,
                         master_burst_nr=master_burst_nr,
                         master_burst_id=master_id,
                         proc_file=proc_file,
                         out_dir=out_dir,
                         temp_dir=temp_dir,
                         slave_file=slave_file,
                         slave_burst_nr=slave_burst_nr,
                         slave_burst_id=slave_id,
                         coherence=coherence,
                         remove_slave_import=False)