Exemple #1
0
def test_p1xp1_BB () : 
    logger.info ('Simplest non-factorized fit model:  ( Gauss + P1 ) (x) ( Gauss + P1 ) + BB' )
    model   = Models.Fit2D (
        suffix   = '_3' , 
        signal_x = signal1  ,
        signal_y = signal2s ,
        bkg_1x     = -1 , 
        bkg_1y     = -1 ,
        bkg_2D     = Models.PolyPos2D_pdf ( 'P2D' , m_x , m_y , nx = 2 , ny = 2 ) 
        )
    
    ## fit with fixed mass and sigma
    with rooSilent() : 
        result, frame = model. fitTo ( dataset )
        model.signal_x.sigma.release () 
        model.signal_y.sigma.release ()
        model.signal_x.mean .release () 
        model.signal_y.mean .release () 
        result, frame = model. fitTo ( dataset )
        
        
    if 0 != result.status() or 3 != result.covQual() :
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d '
                       % ( result.status() , result.covQual()  ) )
        print(result)
    else :
        logger.info ('S1xS2 : %20s' % result ( model.SS ) [0] )
        logger.info ('S1xB2 : %20s' % result ( model.SB ) [0] )
        logger.info ('B1xS2 : %20s' % result ( model.BS ) [0] )
        logger.info ('B1xB2 : %20s' % result ( model.BB ) [0] )

    models.add ( model ) 
def test_polypos2D() :
    
    logger.info ('Test PolyPos2D_pdf: positive polynomial in 2D' )
    model = Models.PolyPos2D_pdf ( 'P2D'  ,
                                   m_x    ,
                                   m_y    ,
                                   nx = 2 ,
                                   ny = 2 )
    
    with rooSilent() : 
        result, f = model.fitTo ( dataset )
        
        model.draw1 ( dataset )        
        model.draw2 ( dataset )

    result, f = model.fitTo ( dataset , silent = True )
        
    if 0 != result.status() or 3 != result.covQual() :
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % ( result.status() , result.covQual () ) )
        print(result)
    else :
        logger.info ( 'Bernstein Coefficients:\n%s' % model.pars() )  
            
       
    models.add ( model ) 
def test_p1xp1_BB():
    logger.info(
        'Simplest non-factorized fit model:  ( Gauss + P1 ) (x) ( Gauss + P1 ) + BB'
    )
    model = Models.Fit2D(suffix='_3',
                         signal_1=Models.Gauss_pdf('Gx',
                                                   m_x.getMin(),
                                                   m_x.getMax(),
                                                   mass=m_x),
                         signal_2=Models.Gauss_pdf('Gy',
                                                   m_y.getMin(),
                                                   m_y.getMax(),
                                                   mass=m_y),
                         power1=1,
                         power2=1,
                         bkg2D=Models.PolyPos2D_pdf('P2D',
                                                    m_x,
                                                    m_y,
                                                    nx=2,
                                                    ny=2))

    model.signal1.sigma.fix(m.error())
    model.signal2.sigma.fix(m.error())
    model.signal1.mean.fix(m.value())
    model.signal2.mean.fix(m.value())
    model.signal1.mean.fix(m.value())
    model.signal2.mean.fix(m.value())
    model.bkg1.tau.fix(0)
    model.bkg2.tau.fix(0)

    ## fit with fixed mass and sigma
    with rooSilent():
        result, frame = model.fitTo(dataset)
        model.signal1.sigma.release()
        model.signal2.sigma.release()
        model.signal1.mean.release()
        model.signal2.mean.release()
        result, frame = model.fitTo(dataset)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))
        print result
    else:
        logger.info('S1xS2 : %20s' % result(model.ss)[0])
        logger.info('S1xB2 : %20s' % result(model.sb)[0])
        logger.info('B1xS2 : %20s' % result(model.bs)[0])
        logger.info('B1xB2 : %20s' % result(model.bb)[0])

    models.add(model)