Exemple #1
0
def test_jcpot_barycenter():
    """test_jcpot_barycenter
    """

    ns1 = 150
    ns2 = 150
    nt = 200

    sigma = 0.1
    np.random.seed(1985)

    ps1 = .2
    ps2 = .9
    pt = .4

    Xs1, ys1 = make_data_classif('2gauss_prop', ns1, nz=sigma, p=ps1)
    Xs2, ys2 = make_data_classif('2gauss_prop', ns2, nz=sigma, p=ps2)
    Xt, yt = make_data_classif('2gauss_prop', nt, nz=sigma, p=pt)

    Xs = [Xs1, Xs2]
    ys = [ys1, ys2]

    prop = ot.bregman.jcpot_barycenter(Xs,
                                       ys,
                                       Xt,
                                       reg=.5,
                                       metric='sqeuclidean',
                                       numItermax=10000,
                                       stopThr=1e-9,
                                       verbose=False,
                                       log=False)

    np.testing.assert_allclose(prop, [1 - pt, pt], rtol=1e-3, atol=1e-3)
Exemple #2
0
def toy(n_samples_source, n_samples_target, nz=0.8, random_state=None):
    Xs, ys = make_data_classif('3gauss',
                               n_samples_source,
                               nz=nz,
                               random_state=random_state)
    Xt, yt = make_data_classif('3gauss2',
                               n_samples_target,
                               nz=nz,
                               random_state=random_state)
    return Xs, ys, Xt, yt
Exemple #3
0
def test_mapping_transport_class_specific_seed(nx):
    # check that it does not crash when derphi is very close to 0
    ns = 20
    nt = 30
    np.random.seed(39)
    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)
    otda = ot.da.MappingTransport(kernel="gaussian", bias=False)
    otda.fit(Xs=nx.from_numpy(Xs), Xt=nx.from_numpy(Xt))
    np.random.seed(None)
Exemple #4
0
def test_linear_mapping():
    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    A, b = ot.da.OT_mapping_linear(Xs, Xt)

    Xst = Xs.dot(A) + b

    Ct = np.cov(Xt.T)
    Cst = np.cov(Xst.T)

    np.testing.assert_allclose(Ct, Cst, rtol=1e-2, atol=1e-2)
Exemple #5
0
def test_mapping_transport_class(nx, kernel, bias):
    """test_mapping_transport
    """

    ns = 20
    nt = 30

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)
    Xs_new, _ = make_data_classif('3gauss', ns + 1)

    Xs, Xt, Xs_new = nx.from_numpy(Xs, Xt, Xs_new)

    # Mapping tests
    bias = bias == "biased"
    otda = ot.da.MappingTransport(kernel=kernel, bias=bias)
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "mapping_")
    assert hasattr(otda, "log_")

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    S = Xs.shape[0] if kernel == "gaussian" else Xs.shape[1]  # if linear
    if bias:
        S += 1
    assert_equal(otda.mapping_.shape, ((S, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        nx.to_numpy(nx.sum(otda.coupling_, axis=0)), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        nx.to_numpy(nx.sum(otda.coupling_, axis=1)), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check everything runs well with log=True
    otda = ot.da.MappingTransport(kernel=kernel, bias=bias, log=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Exemple #6
0
def test_linear_mapping(nx):
    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    Xsb, Xtb = nx.from_numpy(Xs, Xt)

    A, b = ot.da.OT_mapping_linear(Xsb, Xtb)

    Xst = nx.to_numpy(nx.dot(Xsb, A) + b)

    Ct = np.cov(Xt.T)
    Cst = np.cov(Xst.T)

    np.testing.assert_allclose(Ct, Cst, rtol=1e-2, atol=1e-2)
Exemple #7
0
def test_linear_mapping_class():
    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    otmap = ot.da.LinearTransport()

    otmap.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otmap, "A_")
    assert hasattr(otmap, "B_")
    assert hasattr(otmap, "A1_")
    assert hasattr(otmap, "B1_")

    Xst = otmap.transform(Xs=Xs)

    Ct = np.cov(Xt.T)
    Cst = np.cov(Xst.T)

    np.testing.assert_allclose(Ct, Cst, rtol=1e-2, atol=1e-2)
Exemple #8
0
def test_class_jax_tf():
    backends = []
    from ot.backend import jax, tf
    if jax:
        backends.append(ot.backend.JaxBackend())
    if tf:
        backends.append(ot.backend.TensorflowBackend())

    for nx in backends:
        ns = 150
        nt = 200

        Xs, ys = make_data_classif('3gauss', ns)
        Xt, yt = make_data_classif('3gauss2', nt)

        Xs, ys, Xt, yt = nx.from_numpy(Xs, ys, Xt, yt)

        otda = ot.da.SinkhornLpl1Transport()

        with pytest.raises(TypeError):
            otda.fit(Xs=Xs, ys=ys, Xt=Xt)
Exemple #9
0
def test_sinkhorn_l1l2_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    otda = ot.da.SinkhornL1l2Transport()

    # test its computed
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert hasattr(otda, "cost_")
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    Xs_new, _ = make_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    # check label propagation
    transp_yt = otda.transform_labels(ys)
    assert_equal(transp_yt.shape[0], yt.shape[0])
    assert_equal(transp_yt.shape[1], len(np.unique(ys)))

    # check inverse label propagation
    transp_ys = otda.inverse_transform_labels(yt)
    assert_equal(transp_ys.shape[0], ys.shape[0])
    assert_equal(transp_ys.shape[1], len(np.unique(yt)))

    Xt_new, _ = make_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # test unsupervised vs semi-supervised mode
    otda_unsup = ot.da.SinkhornL1l2Transport()
    otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
    n_unsup = np.sum(otda_unsup.cost_)

    otda_semi = ot.da.SinkhornL1l2Transport()
    otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
    assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    n_semisup = np.sum(otda_semi.cost_)

    # check that the cost matrix norms are indeed different
    assert n_unsup != n_semisup, "semisupervised mode not working"

    # check that the coupling forbids mass transport between labeled source
    # and labeled target samples
    mass_semi = np.sum(
        otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
    mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]
    assert_allclose(mass_semi, np.zeros_like(mass_semi), rtol=1e-9, atol=1e-9)

    # check everything runs well with log=True
    otda = ot.da.SinkhornL1l2Transport(log=True)
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Exemple #10
0
def test_jcpot_transport_class():
    """test_jcpot_transport
    """

    ns1 = 150
    ns2 = 150
    nt = 200

    Xs1, ys1 = make_data_classif('3gauss', ns1)
    Xs2, ys2 = make_data_classif('3gauss', ns2)

    Xt, yt = make_data_classif('3gauss2', nt)

    Xs = [Xs1, Xs2]
    ys = [ys1, ys2]

    otda = ot.da.JCPOTTransport(reg_e=1,
                                max_iter=10000,
                                tol=1e-9,
                                verbose=True,
                                log=True)

    # test its computed
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)

    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "proportions_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    for i, xs in enumerate(Xs):
        assert_equal(otda.coupling_[i].shape, ((xs.shape[0], Xt.shape[0])))

    # test all margin constraints
    mu_t = unif(nt)

    for i in range(len(Xs)):
        # test margin constraints w.r.t. uniform target weights for each coupling matrix
        assert_allclose(np.sum(otda.coupling_[i], axis=0),
                        mu_t,
                        rtol=1e-3,
                        atol=1e-3)

        # test margin constraints w.r.t. modified source weights for each source domain

        assert_allclose(np.dot(otda.log_['D1'][i],
                               np.sum(otda.coupling_[i], axis=1)),
                        otda.proportions_,
                        rtol=1e-3,
                        atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    [assert_equal(x.shape, y.shape) for x, y in zip(transp_Xs, Xs)]

    Xs_new, _ = make_data_classif('3gauss', ns1 + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check label propagation
    transp_yt = otda.transform_labels(ys)
    assert_equal(transp_yt.shape[0], yt.shape[0])
    assert_equal(transp_yt.shape[1], len(np.unique(ys)))

    # check inverse label propagation
    transp_ys = otda.inverse_transform_labels(yt)
    [assert_equal(x.shape[0], y.shape[0]) for x, y in zip(transp_ys, ys)]
    [
        assert_equal(x.shape[1], len(np.unique(y)))
        for x, y in zip(transp_ys, ys)
    ]
Exemple #11
0
def test_mapping_transport_class():
    """test_mapping_transport
    """

    ns = 60
    nt = 120

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)
    Xs_new, _ = make_data_classif('3gauss', ns + 1)

    ##########################################################################
    # kernel == linear mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="linear", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "mapping_")
    assert hasattr(otda, "log_")

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="linear", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    ##########################################################################
    # kernel == gaussian mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="gaussian", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="gaussian", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check everything runs well with log=True
    otda = ot.da.MappingTransport(kernel="gaussian", log=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Exemple #12
0
def test_unbalanced_sinkhorn_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    otda = ot.da.UnbalancedSinkhornTransport()

    # test its computed
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "cost_")
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    # check label propagation
    transp_yt = otda.transform_labels(ys)
    assert_equal(transp_yt.shape[0], yt.shape[0])
    assert_equal(transp_yt.shape[1], len(np.unique(ys)))

    # check inverse label propagation
    transp_ys = otda.inverse_transform_labels(yt)
    assert_equal(transp_ys.shape[0], ys.shape[0])
    assert_equal(transp_ys.shape[1], len(np.unique(yt)))

    Xs_new, _ = make_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = make_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # test unsupervised vs semi-supervised mode
    otda_unsup = ot.da.SinkhornTransport()
    otda_unsup.fit(Xs=Xs, Xt=Xt)
    n_unsup = np.sum(otda_unsup.cost_)

    otda_semi = ot.da.SinkhornTransport()
    otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
    assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    n_semisup = np.sum(otda_semi.cost_)

    # check that the cost matrix norms are indeed different
    assert n_unsup != n_semisup, "semisupervised mode not working"

    # check everything runs well with log=True
    otda = ot.da.SinkhornTransport(log=True)
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Exemple #13
0
# Generate data
# -------------
n = 50
sigma = 0.3
np.random.seed(1985)

p1 = .2
dec1 = [0, 2]

p2 = .9
dec2 = [0, -2]

pt = .4
dect = [4, 0]

xs1, ys1 = make_data_classif('2gauss_prop', n, nz=sigma, p=p1, bias=dec1)
xs2, ys2 = make_data_classif('2gauss_prop', n + 1, nz=sigma, p=p2, bias=dec2)
xt, yt = make_data_classif('2gauss_prop', n, nz=sigma, p=pt, bias=dect)

all_Xr = [xs1, xs2]
all_Yr = [ys1, ys2]
# %%

da = 1.5


def plot_ax(dec, name):
    pl.plot([dec[0], dec[0]], [dec[1] - da, dec[1] + da], 'k', alpha=0.5)
    pl.plot([dec[0] - da, dec[0] + da], [dec[1], dec[1]], 'k', alpha=0.5)
    pl.text(dec[0] - .5, dec[1] + 2, name)
Exemple #14
0
def test_emd_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    otda = ot.da.EMDTransport()

    # test its computed
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "cost_")
    assert hasattr(otda, "coupling_")

    # test dimensions of coupling
    assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    Xs_new, _ = make_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = make_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # test unsupervised vs semi-supervised mode
    otda_unsup = ot.da.EMDTransport()
    otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
    n_unsup = np.sum(otda_unsup.cost_)

    otda_semi = ot.da.EMDTransport()
    otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
    assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    n_semisup = np.sum(otda_semi.cost_)

    # check that the cost matrix norms are indeed different
    assert n_unsup != n_semisup, "semisupervised mode not working"

    # check that the coupling forbids mass transport between labeled source
    # and labeled target samples
    mass_semi = np.sum(
        otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
    mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]

    # we need to use a small tolerance here, otherwise the test breaks
    assert_allclose(mass_semi, np.zeros_like(mass_semi),
                    rtol=1e-2, atol=1e-2)
Exemple #15
0
def test_emd_laplace_class():
    """test_emd_laplace_transport
    """
    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    otda = ot.da.EMDLaplaceTransport(reg_lap=0.01,
                                     max_iter=1000,
                                     tol=1e-9,
                                     verbose=False,
                                     log=True)

    # test its computed
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)

    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test all margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)

    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    [assert_equal(x.shape, y.shape) for x, y in zip(transp_Xs, Xs)]

    Xs_new, _ = make_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = make_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # check label propagation
    transp_yt = otda.transform_labels(ys)
    assert_equal(transp_yt.shape[0], yt.shape[0])
    assert_equal(transp_yt.shape[1], len(np.unique(ys)))

    # check inverse label propagation
    transp_ys = otda.inverse_transform_labels(yt)
    assert_equal(transp_ys.shape[0], ys.shape[0])
    assert_equal(transp_ys.shape[1], len(np.unique(yt)))