def funcO5(self, val): Pared_val = np.hstack( (self.Data_Grid[:, 2].reshape(-1, 1), val.reshape(-1, 1))) bivariate_distribution_s = cond.ot_copula_fit(Pared_val) conditioned_dist_t = cond.ot_compute_conditional( val, self.bivariate_distribution_data, self.Data_Grid) conditioned_dist_s = cond.ot_compute_conditional( val, bivariate_distribution_s, self.Data_Grid) O5 = np.sum((conditioned_dist_s - conditioned_dist_t)**2) return O5
print("Execution time: %s seconds" % end_time) print("----------------------------------------------------------------------") print("Optimal solution \n x= \n[", end='') print(*ResultDAx, sep=', ', end=']\n') print("----------------------------------------------------------------------") """------------------------------------End-Dual-Ann-------------------------""" ###Analysis of the result## #Load saved data (only if necessary)# #Ps=lsd.Load_columns(3,[1,2,3],delimiter=' ',windowname='Select Results Data File') #Variable# Ps = np.hstack((Data_Grid[:, :2], ResultDAx.reshape(-1, 1))) Phits = Ps[:, 2] Pared_s = np.hstack((Ip.reshape(-1, 1), Phits.reshape(-1, 1))) bivariate_distribution_s = cond.ot_copula_fit(Pared_s) marginal_s = [bivariate_distribution_s.getMarginal(i) for i in [0, 1]] copula_s = bivariate_distribution_s.getCopula() #Save variable# lsd.Save_Data('Results/Result_' + output_namefile + '.dat', Ps, columns=["X", "Z", "Phits"]) #Descriptive Univariate Statistics# T_Ip = graf.Stats_Univariate(Ip) T_Ip.histogram_boxplot(Ip, xlabel='Ip' + U, marginal=marginal_data[0]) T_Phit = graf.Stats_Univariate(Phit) T_Phit.histogram_boxplot(Phit, xlabel='Phit (v/v)', marginal=marginal_data[1],