def test_lotsofobjects(self): """ A test creating, linking and querying a lot of objects """ print '' print 'cleaning up' self._clean_all() print 'start test' tstart = time.time() if getattr(LotsOfObjects, 'amount_of_machines', None) is None: LotsOfObjects.amount_of_machines = 50 if getattr(LotsOfObjects, 'amount_of_disks', None) is None: LotsOfObjects.amount_of_disks = 5 load_data = True mguids = [] if load_data: print '\nstart loading data' start = time.time() runtimes = [] for i in xrange(0, int(LotsOfObjects.amount_of_machines)): mstart = time.time() machine = TestMachine() machine.name = 'machine_{0}'.format(i) machine.save() mguids.append(machine.guid) for ii in xrange(0, int(LotsOfObjects.amount_of_disks)): disk = TestDisk() disk.name = 'disk_{0}_{1}'.format(i, ii) disk.size = ii * 100 disk.machine = machine disk.save() avgitemspersec = ((i + 1) * LotsOfObjects.amount_of_disks) / (time.time() - start) itemspersec = LotsOfObjects.amount_of_disks / (time.time() - mstart) runtimes.append(itemspersec) LotsOfObjects._print_progress('* machine {0}/{1} (run: {2} dps, avg: {3} dps)'.format(i + 1, int(LotsOfObjects.amount_of_machines), round(itemspersec, 2), round(avgitemspersec, 2))) runtimes.sort() print '\nloading done ({0}s). min: {1} dps, max: {2} dps'.format(round(time.time() - tstart, 2), round(runtimes[1], 2), round(runtimes[-2], 2)) test_queries = True if test_queries: print '\nstart queries' start = time.time() runtimes = [] for i in xrange(0, int(LotsOfObjects.amount_of_machines)): mstart = time.time() machine = TestMachine(mguids[i]) assert len(machine.disks) == LotsOfObjects.amount_of_disks, 'Not all disks were retrieved ({0})'.format(len(machine.disks)) avgitemspersec = ((i + 1) * LotsOfObjects.amount_of_disks) / (time.time() - start) itemspersec = LotsOfObjects.amount_of_disks / (time.time() - mstart) runtimes.append(itemspersec) LotsOfObjects._print_progress('* machine {0}/{1} (run: {2} dps, avg: {3} dps)'.format(i + 1, int(LotsOfObjects.amount_of_machines), round(itemspersec, 2), round(avgitemspersec, 2))) runtimes.sort() print '\ncompleted ({0}s). min: {1} dps, max: {2} dps'.format(round(time.time() - tstart, 2), round(runtimes[1], 2), round(runtimes[-2], 2)) print '\nstart full query on disk property' start = time.time() dlist = DataList(TestDisk, {'type': DataList.where_operator.AND, 'items': [('size', DataList.operator.GT, 100), ('size', DataList.operator.LT, (LotsOfObjects.amount_of_disks - 1) * 100)]}) amount = len(dlist) assert amount == (LotsOfObjects.amount_of_disks - 3) * LotsOfObjects.amount_of_machines, 'Incorrect amount of disks. Found {0} instead of {1}'.format(amount, int((LotsOfObjects.amount_of_disks - 3) * LotsOfObjects.amount_of_machines)) seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format(round(time.time() - tstart, 2), round(seconds_passed, 2), round(LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) print '\nloading disks (all)' start = time.time() for i in xrange(0, int(LotsOfObjects.amount_of_machines)): machine = TestMachine(mguids[i]) _ = [_ for _ in machine.disks] seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format(round(time.time() - tstart, 2), round(seconds_passed, 2), round(LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) print '\nstart full query on disk property (using cached objects)' dlist._volatile.delete(dlist._key) start = time.time() dlist = DataList(TestDisk, {'type': DataList.where_operator.AND, 'items': [('size', DataList.operator.GT, 100), ('size', DataList.operator.LT, (LotsOfObjects.amount_of_disks - 1) * 100)]}) amount = len(dlist) assert amount == (LotsOfObjects.amount_of_disks - 3) * LotsOfObjects.amount_of_machines, 'Incorrect amount of disks. Found {0} instead of {1}'.format(amount, int((LotsOfObjects.amount_of_disks - 3) * LotsOfObjects.amount_of_machines)) seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format(round(time.time() - tstart, 2), round(seconds_passed, 2), round(LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) print '\nstart property sort' dlist = DataList(TestDisk, {'type': DataList.where_operator.AND, 'items': []}) start = time.time() dlist.sort(key=lambda a: Toolbox.extract_key(a, 'size')) seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format(round(time.time() - tstart, 2), round(seconds_passed, 2), round(LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) print '\nstart dynamic sort' dlist._volatile.delete(dlist._key) dlist = DataList(TestDisk, {'type': DataList.where_operator.AND, 'items': []}) start = time.time() dlist.sort(key=lambda a: Toolbox.extract_key(a, 'predictable')) seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format(round(time.time() - tstart, 2), round(seconds_passed, 2), round(LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) clean_data = True if clean_data: print '\ncleaning up' start = time.time() runtimes = [] for i in xrange(0, int(LotsOfObjects.amount_of_machines)): mstart = time.time() machine = TestMachine(mguids[i]) for disk in machine.disks: disk.delete() machine.delete() avgitemspersec = ((i + 1) * LotsOfObjects.amount_of_disks) / (time.time() - start) itemspersec = LotsOfObjects.amount_of_disks / (time.time() - mstart) runtimes.append(itemspersec) LotsOfObjects._print_progress('* machine {0}/{1} (run: {2} dps, avg: {3} dps)'.format(i + 1, int(LotsOfObjects.amount_of_machines), round(itemspersec, 2), round(avgitemspersec, 2))) runtimes.sort() print '\ncompleted ({0}s). min: {1} dps, max: {2} dps'.format(round(time.time() - tstart, 2), round(runtimes[1], 2), round(runtimes[-2], 2))
def new_function(*args, **kwargs): """ Wrapped function """ request = _find_request(args) # 1. Pre-loading request data sort = request.QUERY_PARAMS.get('sort') if sort is None and default_sort is not None: sort = default_sort sort = None if sort is None else [s for s in reversed(sort.split(','))] page = request.QUERY_PARAMS.get('page') page = int(page) if page is not None and page.isdigit() else None page_size = request.QUERY_PARAMS.get('page_size') page_size = int(page_size) if page_size is not None and page_size.isdigit() else None page_size = page_size if page_size in [10, 25, 50, 100] else 10 contents = request.QUERY_PARAMS.get('contents') contents = None if contents is None else contents.split(',') # 2. Construct hints for decorated function (so it can provide full objects if required) if 'hints' not in kwargs: kwargs['hints'] = {} kwargs['hints']['full'] = sort is not None or contents is not None # 3. Fetch data data_list = f(*args, **kwargs) guid_list = isinstance(data_list, list) and len(data_list) > 0 and isinstance(data_list[0], basestring) # 4. Sorting if sort is not None: if guid_list is True: data_list = [object_type(guid) for guid in data_list] guid_list = False # The list is converted to objects for sort_item in sort: desc = sort_item[0] == '-' field = sort_item[1 if desc else 0:] data_list.sort(key=lambda e: DalToolbox.extract_key(e, field), reverse=desc) # 5. Paging total_items = len(data_list) page_metadata = {'total_items': total_items, 'current_page': 1, 'max_page': 1, 'page_size': page_size, 'start_number': min(1, total_items), 'end_number': total_items} if page is not None: max_page = int(math.ceil(total_items / (page_size * 1.0))) if page > max_page: page = max_page if page == 0: start_number = -1 end_number = 0 else: start_number = (page - 1) * page_size # Index - e.g. 0 for page 1, 10 for page 2 end_number = start_number + page_size # Index - e.g. 10 for page 1, 20 for page 2 data_list = data_list[start_number: end_number] page_metadata = dict(page_metadata.items() + {'current_page': max(1, page), 'max_page': max(1, max_page), 'start_number': start_number + 1, 'end_number': min(total_items, end_number)}.items()) else: page_metadata['page_size'] = total_items # 6. Serializing if contents is not None: if guid_list is True: data_list = [object_type(guid) for guid in data_list] data = FullSerializer(object_type, contents=contents, instance=data_list, many=True).data else: if guid_list is False: data_list = [item.guid for item in data_list] data = data_list result = {'data': data, '_paging': page_metadata, '_contents': contents, '_sorting': [s for s in reversed(sort)] if sort else sort} # 7. Building response return Response(result, status=status.HTTP_200_OK)
def new_function(*args, **kwargs): """ Wrapped function """ request = _find_request(args) # 1. Pre-loading request data sort = request.QUERY_PARAMS.get('sort') if sort is None and default_sort is not None: sort = default_sort sort = None if sort is None else [ s for s in reversed(sort.split(',')) ] page = request.QUERY_PARAMS.get('page') page = int(page) if page is not None and page.isdigit() else None page_size = request.QUERY_PARAMS.get('page_size') page_size = int( page_size ) if page_size is not None and page_size.isdigit() else None page_size = page_size if page_size in [10, 25, 50, 100] else 10 contents = request.QUERY_PARAMS.get('contents') contents = None if contents is None else contents.split(',') # 2. Construct hints for decorated function (so it can provide full objects if required) if 'hints' not in kwargs: kwargs['hints'] = {} kwargs['hints']['full'] = sort is not None or contents is not None # 3. Fetch data data_list = f(*args, **kwargs) guid_list = isinstance(data_list, list) and len(data_list) > 0 and isinstance( data_list[0], basestring) # 4. Sorting if sort is not None: if guid_list is True: data_list = [object_type(guid) for guid in data_list] guid_list = False # The list is converted to objects for sort_item in sort: desc = sort_item[0] == '-' field = sort_item[1 if desc else 0:] data_list.sort( key=lambda e: DalToolbox.extract_key(e, field), reverse=desc) # 5. Paging total_items = len(data_list) page_metadata = { 'total_items': total_items, 'current_page': 1, 'max_page': 1, 'page_size': page_size, 'start_number': min(1, total_items), 'end_number': total_items } if page is not None: max_page = int(math.ceil(total_items / (page_size * 1.0))) if page > max_page: page = max_page if page == 0: start_number = -1 end_number = 0 else: start_number = ( page - 1 ) * page_size # Index - e.g. 0 for page 1, 10 for page 2 end_number = start_number + page_size # Index - e.g. 10 for page 1, 20 for page 2 data_list = data_list[start_number:end_number] page_metadata = dict( page_metadata.items() + { 'current_page': max(1, page), 'max_page': max(1, max_page), 'start_number': start_number + 1, 'end_number': min(total_items, end_number) }.items()) else: page_metadata['page_size'] = total_items # 6. Serializing if contents is not None: if guid_list is True: data_list = [object_type(guid) for guid in data_list] data = FullSerializer(object_type, contents=contents, instance=data_list, many=True).data else: if guid_list is False: data_list = [item.guid for item in data_list] data = data_list result = { 'data': data, '_paging': page_metadata, '_contents': contents, '_sorting': [s for s in reversed(sort)] if sort else sort } # 7. Building response return Response(result, status=status.HTTP_200_OK)
def test_lotsofobjects(self): """ A test creating, linking and querying a lot of objects """ print '' print 'cleaning up' self._clean_all() print 'start test' tstart = time.time() if getattr(LotsOfObjects, 'amount_of_machines', None) is None: LotsOfObjects.amount_of_machines = 50 if getattr(LotsOfObjects, 'amount_of_disks', None) is None: LotsOfObjects.amount_of_disks = 5 load_data = True mguids = [] if load_data: print '\nstart loading data' start = time.time() runtimes = [] for i in xrange(0, int(LotsOfObjects.amount_of_machines)): mstart = time.time() machine = TestMachine() machine.name = 'machine_{0}'.format(i) machine.save() mguids.append(machine.guid) for ii in xrange(0, int(LotsOfObjects.amount_of_disks)): disk = TestDisk() disk.name = 'disk_{0}_{1}'.format(i, ii) disk.size = ii * 100 disk.machine = machine disk.save() avgitemspersec = ((i + 1) * LotsOfObjects.amount_of_disks) / ( time.time() - start) itemspersec = LotsOfObjects.amount_of_disks / (time.time() - mstart) runtimes.append(itemspersec) LotsOfObjects._print_progress( '* machine {0}/{1} (run: {2} dps, avg: {3} dps)'.format( i + 1, int(LotsOfObjects.amount_of_machines), round(itemspersec, 2), round(avgitemspersec, 2))) runtimes.sort() print '\nloading done ({0}s). min: {1} dps, max: {2} dps'.format( round(time.time() - tstart, 2), round(runtimes[1], 2), round(runtimes[-2], 2)) test_queries = True if test_queries: print '\nstart queries' start = time.time() runtimes = [] for i in xrange(0, int(LotsOfObjects.amount_of_machines)): mstart = time.time() machine = TestMachine(mguids[i]) assert len( machine.disks ) == LotsOfObjects.amount_of_disks, 'Not all disks were retrieved ({0})'.format( len(machine.disks)) avgitemspersec = ((i + 1) * LotsOfObjects.amount_of_disks) / ( time.time() - start) itemspersec = LotsOfObjects.amount_of_disks / (time.time() - mstart) runtimes.append(itemspersec) LotsOfObjects._print_progress( '* machine {0}/{1} (run: {2} dps, avg: {3} dps)'.format( i + 1, int(LotsOfObjects.amount_of_machines), round(itemspersec, 2), round(avgitemspersec, 2))) runtimes.sort() print '\ncompleted ({0}s). min: {1} dps, max: {2} dps'.format( round(time.time() - tstart, 2), round(runtimes[1], 2), round(runtimes[-2], 2)) print '\nstart full query on disk property' start = time.time() dlist = DataList( TestDisk, { 'type': DataList.where_operator.AND, 'items': [('size', DataList.operator.GT, 100), ('size', DataList.operator.LT, (LotsOfObjects.amount_of_disks - 1) * 100)] }) amount = len(dlist) assert amount == ( LotsOfObjects.amount_of_disks - 3 ) * LotsOfObjects.amount_of_machines, 'Incorrect amount of disks. Found {0} instead of {1}'.format( amount, int((LotsOfObjects.amount_of_disks - 3) * LotsOfObjects.amount_of_machines)) seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format( round(time.time() - tstart, 2), round(seconds_passed, 2), round( LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) print '\nloading disks (all)' start = time.time() for i in xrange(0, int(LotsOfObjects.amount_of_machines)): machine = TestMachine(mguids[i]) _ = [_ for _ in machine.disks] seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format( round(time.time() - tstart, 2), round(seconds_passed, 2), round( LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) print '\nstart full query on disk property (using cached objects)' dlist._volatile.delete(dlist._key) start = time.time() dlist = DataList( TestDisk, { 'type': DataList.where_operator.AND, 'items': [('size', DataList.operator.GT, 100), ('size', DataList.operator.LT, (LotsOfObjects.amount_of_disks - 1) * 100)] }) amount = len(dlist) assert amount == ( LotsOfObjects.amount_of_disks - 3 ) * LotsOfObjects.amount_of_machines, 'Incorrect amount of disks. Found {0} instead of {1}'.format( amount, int((LotsOfObjects.amount_of_disks - 3) * LotsOfObjects.amount_of_machines)) seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format( round(time.time() - tstart, 2), round(seconds_passed, 2), round( LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) print '\nstart property sort' dlist = DataList(TestDisk, { 'type': DataList.where_operator.AND, 'items': [] }) start = time.time() dlist.sort(key=lambda a: Toolbox.extract_key(a, 'size')) seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format( round(time.time() - tstart, 2), round(seconds_passed, 2), round( LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) print '\nstart dynamic sort' dlist._volatile.delete(dlist._key) dlist = DataList(TestDisk, { 'type': DataList.where_operator.AND, 'items': [] }) start = time.time() dlist.sort(key=lambda a: Toolbox.extract_key(a, 'predictable')) seconds_passed = (time.time() - start) print 'completed ({0}s) in {1} seconds (avg: {2} dps)'.format( round(time.time() - tstart, 2), round(seconds_passed, 2), round( LotsOfObjects.amount_of_machines * LotsOfObjects.amount_of_disks / seconds_passed, 2)) clean_data = True if clean_data: print '\ncleaning up' start = time.time() runtimes = [] for i in xrange(0, int(LotsOfObjects.amount_of_machines)): mstart = time.time() machine = TestMachine(mguids[i]) for disk in machine.disks: disk.delete() machine.delete() avgitemspersec = ((i + 1) * LotsOfObjects.amount_of_disks) / ( time.time() - start) itemspersec = LotsOfObjects.amount_of_disks / (time.time() - mstart) runtimes.append(itemspersec) LotsOfObjects._print_progress( '* machine {0}/{1} (run: {2} dps, avg: {3} dps)'.format( i + 1, int(LotsOfObjects.amount_of_machines), round(itemspersec, 2), round(avgitemspersec, 2))) runtimes.sort() print '\ncompleted ({0}s). min: {1} dps, max: {2} dps'.format( round(time.time() - tstart, 2), round(runtimes[1], 2), round(runtimes[-2], 2))