Exemple #1
0
 def setUp(self):
     self.sampling_rate = 44100
     self.dirloc = DirectionLocalizer(mic_layout=None, sample_rate=44100)
     self.dft_len = 8
     self.stft = StftManager(dft_length=self.dft_len,
                             window_length=self.dft_len,
                             hop_length=self.dft_len,
                             use_window_fcn=False)
     mic_positions = np.array([[1, 1, 0], [-1, 1, 0], [-1, -1, 0],
                               [1, -1, 0], [0, 0, 1]])
     self._n_mics = mic_positions.shape[0]
     self._n_theta = 4
     self._n_phi = 4
     self.distrloc = DistributionLocalizer(mic_positions=mic_positions,
                                           dft_len=self.dft_len,
                                           sample_rate=44100,
                                           n_theta=self._n_theta,
                                           n_phi=self._n_phi)
     pass
Exemple #2
0
def localize():
    # Setup pyaudio instances
    pa = pyaudio.PyAudio()
    helper = AudioHelper(pa)
    localizer = DistributionLocalizer(mic_positions=mic_layout,
                                      dft_len=FFT_LENGTH,
                                      sample_rate=SAMPLE_RATE,
                                      n_theta=N_THETA,
                                      n_phi=N_PHI)

    # Setup STFT object
    stft = StftManager(dft_length=FFT_LENGTH,
                       window_length=WINDOW_LENGTH,
                       hop_length=HOP_LENGTH,
                       use_window_fcn=True,
                       n_channels=NUM_CHANNELS_IN,
                       dtype=DATA_TYPE)

    # Setup devices
    in_device = helper.get_input_device_from_user()
    if PLAY_AUDIO:
        out_device = helper.get_output_device_from_user()
    else:
        out_device = helper.get_default_output_device_info()

    # Setup streams
    in_stream = pa.open(rate=SAMPLE_RATE,
                        channels=NUM_CHANNELS_IN,
                        format=SAMPLE_TYPE,
                        frames_per_buffer=FRAMES_PER_BUF,
                        input=True,
                        input_device_index=int(in_device['index']),
                        stream_callback=read_in_data)
    out_stream = pa.open(rate=SAMPLE_RATE,
                         channels=NUM_CHANNELS_OUT,
                         format=SAMPLE_TYPE,
                         output=True,
                         frames_per_buffer=FRAMES_PER_BUF,
                         output_device_index=int(out_device['index']),
                         stream_callback=write_out_data)

    # Start recording/playing back
    in_stream.start_stream()
    out_stream.start_stream()

    # Start thread to check for user quit
    quit_thread = threading.Thread(target=check_for_quit)
    quit_thread.start()

    # Plotting setup
    if PLOT_POLAR:
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='polar')
        ax.set_rlim(0, 1)
        plt.show(block=False)
        # Setup space for plotting in new coordinates
        spher_coords = localizer.get_spher_directions()
        theta = spher_coords[1, :]
        pol_plot, = plt.plot(theta, np.ones(theta.shape))
        ax.set_ylim(0, 1)
    if EXTERNAL_PLOT:
        fig = plt.figure()
        ax = fig.add_subplot(111)
        plt.show(block=False)

    count = 0
    direcs = localizer.get_directions()
    try:
        global done
        while in_stream.is_active() or out_stream.is_active():
            data_available = in_buf.wait_for_read(WINDOW_LENGTH, TIMEOUT)
            if data_available:
                # Get data from the circular buffer
                data = in_buf.read_samples(WINDOW_LENGTH)
                # Perform an stft
                stft.performStft(data)
                # Process dfts from windowed segments of input
                dfts = stft.getDFTs()
                d = localizer.get_3d_real_distribution(dfts)
                ind = np.argmax(d)
                u = 1.5 * direcs[:, ind]  # Direction of arrival

                # Take car of plotting
                if count % 1 == 0:
                    if PLOT_POLAR:
                        d = localizer.to_spher_grid(d)
                        d /= np.max(d)
                        pol_plot.set_ydata(d[0, :])
                        plt.draw()
                count += 1

                # Get the istft of the processed data
                if PLAY_AUDIO:
                    new_data = stft.performIStft()
                    new_data = out_buf.reduce_channels(new_data,
                                                       NUM_CHANNELS_IN,
                                                       NUM_CHANNELS_OUT)
                    # Write out the new, altered data
                    if out_buf.get_available_write() >= WINDOW_LENGTH:
                        out_buf.write_samples(new_data)
                        #time.sleep(.05)
    except KeyboardInterrupt:
        print "Program interrupted"
        done = True

    print "Cleaning up"
    in_stream.stop_stream()
    in_stream.close()
    out_stream.stop_stream()
    out_stream.close()
    pa.terminate()
    print "Done"
Exemple #3
0
def localize():
    global switch_beamforming
    global DO_BEAMFORM
    # Setup pyaudio instances
    pa = pyaudio.PyAudio()
    helper = AudioHelper(pa)
    localizer = DistributionLocalizer(mic_positions=mic_layout,
                                      dft_len=FFT_LENGTH,
                                      sample_rate=SAMPLE_RATE,
                                      n_theta=N_THETA,
                                      n_phi=N_PHI)
    beamformer = BeamFormer(mic_layout, SAMPLE_RATE)

    # Setup STFT object
    stft = StftManager(dft_length=FFT_LENGTH,
                       window_length=WINDOW_LENGTH,
                       hop_length=HOP_LENGTH,
                       use_window_fcn=True,
                       n_channels=NUM_CHANNELS_IN,
                       dtype=DATA_TYPE)

    # Setup devices
    in_device = helper.get_input_device_from_user()
    if PLAY_AUDIO:
        out_device = helper.get_output_device_from_user()
    else:
        out_device = helper.get_default_output_device_info()

    # Setup streams
    in_stream = pa.open(rate=SAMPLE_RATE,
                        channels=NUM_CHANNELS_IN,
                        format=SAMPLE_TYPE,
                        frames_per_buffer=FRAMES_PER_BUF,
                        input=True,
                        input_device_index=int(in_device['index']),
                        stream_callback=read_in_data)
    out_stream = pa.open(rate=SAMPLE_RATE,
                         channels=NUM_CHANNELS_OUT,
                         format=SAMPLE_TYPE,
                         output=True,
                         frames_per_buffer=FRAMES_PER_BUF,
                         output_device_index=int(out_device['index']),
                         stream_callback=write_out_data)

    # Start recording/playing back
    in_stream.start_stream()
    out_stream.start_stream()

    # Start thread to check for user quit
    quit_thread = threading.Thread(target=check_for_quit)
    quit_thread.start()

    # Setup directions and alignment matrices
    direcs = localizer.get_directions()
    align_mats = localizer.get_pos_align_mat()

    # Plotting setup
    if PLOT_CARTES:
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')
        plt.show(block=False)
        x = localizer.to_spher_grid(direcs[0, :])
        y = localizer.to_spher_grid(direcs[1, :])
        z = localizer.to_spher_grid(direcs[2, :])
        #scat = ax.scatter(x, y, z, s=100)
    if PLOT_POLAR:
        fig = plt.figure()
        ax = fig.add_axes([.1, .1, .8, .8], projection='polar')
        ax.set_rlim(0, 1)
        plt.show(block=False)
        # Setup space for plotting in new coordinates
        spher_coords = localizer.get_spher_directions()
        pol = localizer.to_spher_grid(spher_coords[2, :])
        weight = 1. - .3 * np.sin(
            2 * pol)  # Used to pull visualization off edges
        r = np.sin(pol) * weight
        theta = localizer.to_spher_grid(spher_coords[1, :])
    if EXTERNAL_PLOT:
        fig = plt.figure()
        ax = fig.add_subplot(111)
        plt.show(block=False)

    count = 0
    try:
        global done
        while in_stream.is_active() or out_stream.is_active():
            data_available = in_buf.wait_for_read(WINDOW_LENGTH, TIMEOUT)
            if data_available:
                if switch_beamforming:
                    DO_BEAMFORM = not DO_BEAMFORM
                    switch_beamforming = False
                # Get data from the circular buffer
                data = in_buf.read_samples(WINDOW_LENGTH)
                # Perform an stft
                stft.performStft(data)
                # Process dfts from windowed segments of input
                dfts = stft.getDFTs()
                rffts = mat.to_all_real_matlab_format(dfts)
                d, energy = localizer.get_distribution_real(rffts[:, :, 0])
                ind = np.argmax(d)
                u = 1.5 * direcs[:, ind]  # Direction of arrival

                # Do beam forming
                if DO_BEAMFORM:
                    align_mat = align_mats[:, :, ind]
                    filtered = beamformer.filter_real(rffts, align_mat)
                    mat.set_dfts_real(dfts, filtered, n_channels=2)
                    # Get beam plot
                    freq = 1500.  # Hz
                    response = beamformer.get_beam(align_mat, align_mats,
                                                   rffts, freq)
                    response = localizer.to_spher_grid(response)

                # Take car of plotting
                if count % 1 == 0:
                    if PLOT_CARTES:
                        ax.cla()
                        ax.grid(False)
                        d = localizer.to_spher_grid(d /
                                                    (np.max(d) + consts.EPS))
                        ax.scatter(x, y, z, c=d, s=40)
                        #ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolor=plt.cm.gist_heat(d))
                        ax.plot([0, u[0]], [0, u[1]], [0, u[2]],
                                c='black',
                                linewidth=3)
                        if DO_BEAMFORM:
                            if np.max(np.abs(response)) > 1:
                                response /= np.max(np.abs(response))
                            X = response * x
                            Y = response * y
                            Z = response * z
                            ax.plot_surface(X,
                                            Y,
                                            Z,
                                            rstride=1,
                                            cstride=1,
                                            color='white')
                        ax.set_xlim(-1, 1)
                        ax.set_ylim(-1, 1)
                        ax.set_zlim(0, 1)
                        #ax.view_init(90, -90)
                        fig.canvas.draw()
                    if PLOT_POLAR:
                        plt.cla()
                        d = localizer.to_spher_grid(d)
                        con = ax.contourf(theta, r, d, vmin=0, vmax=40)
                        con.set_cmap('gist_heat')
                        if DO_BEAMFORM:
                            response = response[
                                -1, :]  # Pick which polar angle sample to use
                            ax.plot(theta[0, :], response, 'cyan', linewidth=4)
                            ax.set_rlim(0, 1)
                        fig.canvas.draw()
                count += 1

                # Get the istft of the processed data
                if PLAY_AUDIO or RECORD_AUDIO:
                    new_data = stft.performIStft()
                    new_data = out_buf.reduce_channels(new_data,
                                                       NUM_CHANNELS_IN,
                                                       NUM_CHANNELS_OUT)
                    # Write out the new, altered data
                    if PLAY_AUDIO:
                        if out_buf.get_available_write() >= WINDOW_LENGTH:
                            out_buf.write_samples(new_data)
                    if RECORD_AUDIO:
                        if record_buf.get_available_write() >= WINDOW_LENGTH:
                            record_buf.write_samples(new_data)

    except KeyboardInterrupt:
        print "Program interrupted"
        done = True

    print "Cleaning up"
    in_stream.stop_stream()
    in_stream.close()
    out_stream.stop_stream()
    out_stream.close()
    pa.terminate()

    # Take care of output file
    if RECORD_AUDIO:
        print "Writing output file"
        make_wav()

    print "Done"
Exemple #4
0
    def testGetDistribution3D(self):
        R = 0.0375
        H = 0.07
        x = np.array(
            [[0, 0, H], [R, 0, 0],
             [R * math.cos(math.pi / 3), R * math.sin(math.pi / 3), 0],
             [-R * math.cos(math.pi / 3), R * math.sin(math.pi / 3), 0],
             [-R, 0, 0],
             [-R * math.cos(math.pi / 3), -R * math.sin(math.pi / 3), 0],
             [R * math.cos(math.pi / 3), -R * math.sin(math.pi / 3), 0]])
        nmics = 7

        # Setup plot
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')
        plt.show(block=False)

        # Peform simulation
        N_trials = 10
        for n in range(N_trials):
            # Get random direction
            source = np.array([-100, -100, 0]) + 200 * np.random.rand(3)
            #source =np.array([70, 20, 100])
            # Compute distances and delays
            d = np.sqrt(np.sum((x - source)**2, axis=1))
            #d1 = d[0] - d
            delays = d / pa_tools.SPEED_OF_SOUND
            print "delays: " + str(delays)

            # Create audio sample
            Fs = 44100
            T = 1. / Fs
            nsecs = .25
            N = Fs * nsecs
            fund_freq = 50
            low_freq = 1 / (2 * nsecs)
            n = (np.tile(np.arange(N) * T, (nmics, 1)).T - delays).T
            s = np.sin(n * math.pi * low_freq)
            # Add different harmonics to signal
            for k in range(50):
                if k % 3 == 1:
                    s += 5 * np.sin(n * 2 * math.pi * fund_freq * k)
            # Add random noise to each signal
            #s += .35 * np.random.rand(nmics, s.shape[1])

            # Setup localizer
            window_len = 512
            N_THETA = 20
            N_PHI = N_THETA / 2
            loc = DistributionLocalizer(x,
                                        sample_rate=Fs,
                                        n_theta=N_THETA,
                                        dft_len=window_len,
                                        n_phi=N_PHI)

            # Get section of signal
            ind = round(random.random() * (N - 512 - 1))
            #ind = 200;
            g = s[:, ind:ind + window_len]
            #print g
            #f = plt.figure()
            #a = f.add_subplot(111)
            #a.plot(np.arange(g.shape[1]), g.T)
            #plt.show()
            G = np.fft.fft(g, n=window_len, axis=1)
            G_real = np.fft.rfft(g, n=window_len, axis=1)

            direcs = loc.get_directions()
            d_real = loc.get_distribution_real(G_real)
            d = loc.get_distribution_mat(G)
            #self.assertListFloatEqual(d, d_real)
            d = d_real
            print "max: " + str(np.max(d))
            print "min: " + str(np.min(d))
            maxind = np.argmax(d)
            u = 1.5 * direcs[:, maxind]
            v = 1.5 * source / np.linalg.norm(source, 2)
            #self.assertLessEqual(np.sqrt(np.sum((u / 1.5 - v / 1.5) ** 2)), .2)
            plt.cla()
            ax.scatter(direcs[0, :], direcs[1, :], direcs[2, :], s=30, c=d)
            ax.plot([0, v[0]], [0, v[1]], [0, v[2]])
            ax.plot([0, u[0]], [0, u[1]], [0, u[2]], c='r')
            #ax.view_init(azim=-90, elev=90)
            plt.draw()
            time.sleep(.5)
Exemple #5
0
def localize():
    global switch_beamforming
    global DO_BEAMFORM
    # Setup pyaudio instances
    pa = pyaudio.PyAudio()
    helper = AudioHelper(pa)
    localizer = DistributionLocalizer(mic_positions=mic_layout,
                                      dft_len=FFT_LENGTH,
                                      sample_rate=SAMPLE_RATE,
                                      n_theta=N_THETA,
                                      n_phi=N_PHI)
    beamformer = BeamFormer(mic_layout, SAMPLE_RATE)

    # Setup STFT object
    stft = StftManager(dft_length=FFT_LENGTH,
                       window_length=WINDOW_LENGTH,
                       hop_length=HOP_LENGTH,
                       use_window_fcn=True,
                       n_channels=NUM_CHANNELS_IN,
                       dtype=DATA_TYPE)

    # Setup devices
    in_device = helper.get_input_device_from_user()
    if PLAY_AUDIO:
        out_device = helper.get_output_device_from_user()
    else:
        out_device = helper.get_default_output_device_info()

    # Setup streams
    in_stream = pa.open(rate=SAMPLE_RATE,
                        channels=NUM_CHANNELS_IN,
                        format=SAMPLE_TYPE,
                        frames_per_buffer=FRAMES_PER_BUF,
                        input=True,
                        input_device_index=int(in_device['index']),
                        stream_callback=read_in_data)
    out_stream = pa.open(rate=SAMPLE_RATE,
                         channels=NUM_CHANNELS_OUT,
                         format=SAMPLE_TYPE,
                         output=True,
                         frames_per_buffer=FRAMES_PER_BUF,
                         output_device_index=int(out_device['index']),
                         stream_callback=write_out_data)

    # Start recording/playing back
    in_stream.start_stream()
    out_stream.start_stream()

    # Start thread to check for user quit
    quit_thread = threading.Thread(target=check_for_quit)
    quit_thread.start()

    # Setup directions and alignment matrices
    direcs = localizer.get_directions()
    align_mats = localizer.get_pos_align_mat()

    # Plotting setup
    if PLOT_POLAR:
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='polar')
        ax.set_rlim(0, 1)
        plt.show(block=False)
        # Setup space for plotting in new coordinates
        spher_coords = localizer.get_spher_directions()
        theta = spher_coords[1, :]
        pol_plot, = plt.plot(theta, np.ones(theta.shape))
        ax.set_ylim(0, 1)
        if DO_BEAMFORM:
            pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red')
    if EXTERNAL_PLOT:
        fig = plt.figure()
        ax = fig.add_subplot(111)
        plt.show(block=False)

    count = 0
    try:
        global done
        while in_stream.is_active() or out_stream.is_active():
            data_available = in_buf.wait_for_read(WINDOW_LENGTH, TIMEOUT)
            if data_available:
                if switch_beamforming:
                    DO_BEAMFORM = not DO_BEAMFORM
                    switch_beamforming = False
                    # Get data from the circular buffer
                data = in_buf.read_samples(WINDOW_LENGTH)
                # Perform an stft
                stft.performStft(data)
                # Process dfts from windowed segments of input
                dfts = stft.getDFTs()
                rffts = mat.to_all_real_matlab_format(dfts)
                d, energy = localizer.get_distribution_real(
                    rffts[:, :, 0], 'gcc')  # Use first hop
                print d
                print "SIZE: " + str(d.shape)
                ind = np.argmax(d)
                u = 1.5 * direcs[:, ind]  # Direction of arrival

                # Do beam forming
                if DO_BEAMFORM:
                    align_mat = align_mats[:, :, ind]
                    filtered = beamformer.filter_real(rffts, align_mat)
                    mat.set_dfts_real(dfts, filtered, n_channels=2)

                # Take care of plotting
                if count % 1 == 0:
                    if PLOT_POLAR:
                        #d -= np.min(d)
                        d = localizer.to_spher_grid(d)
                        #d /= np.max(d)
                        if np.max(d) > 1:
                            d /= np.max(d)
                        pol_plot.set_ydata(d[0, :])
                        if DO_BEAMFORM:
                            # Get beam plot
                            freq = 1000.  # Hz
                            response = beamformer.get_beam(
                                align_mat, align_mats, rffts, freq)
                            response = localizer.to_spher_grid(response)
                            if np.max(response) > 1:
                                response /= np.max(response)
                            pol_beam_plot.set_ydata(response[-1, :])
                        plt.draw()
                count += 1

                # Get the istft of the processed data
                if PLAY_AUDIO or RECORD_AUDIO:
                    new_data = stft.performIStft()
                    new_data = out_buf.reduce_channels(new_data,
                                                       NUM_CHANNELS_IN,
                                                       NUM_CHANNELS_OUT)
                    # Write out the new, altered data
                    if PLAY_AUDIO:
                        if out_buf.get_available_write() >= WINDOW_LENGTH:
                            out_buf.write_samples(new_data)
                    if RECORD_AUDIO:
                        if record_buf.get_available_write() >= WINDOW_LENGTH:
                            record_buf.write_samples(new_data)

    except KeyboardInterrupt:
        print "Program interrupted"
        done = True

    print "Cleaning up"
    in_stream.stop_stream()
    in_stream.close()
    out_stream.stop_stream()
    out_stream.close()
    pa.terminate()

    # Take care of output file
    if RECORD_AUDIO:
        print "Writing output file"
        make_wav()

    print "Done"