def criminalinfo(): if 'auth' in session: try: c, conn = connection() if request.method == "POST": name = request.form['name'] nic = request.form['nic'] age = request.form['age'] add01 = request.form['add01'] add02 = request.form['add02'] add03 = request.form['add03'] eye = request.form['eye'] hair = request.form['hair'] gender = request.form['gender'] data = c.execute("SELECT * FROM criminalinfo WHERE nic=(%s)", (thwart(nic))) if int(data) > 0: print(data) else: c.execute( "INSERT INTO criminalinfo (nic,name,age,addressline01,addressline02,addressline03,eyecolor,haircolor,gender) values(%s,%s,%s,%s,%s,%s,%s,%s,%s)", (thwart(nic), thwart(name), thwart(age), thwart(add01), thwart(add02), thwart(add03), thwart(eye), thwart(hair), thwart(gender))) conn.commit() c.close() conn.close() target = os.path.join(APP_ROOT, 'uploads/train/' + nic) print(target) if not os.path.isdir(target): os.mkdir(target) count = 0 for file in request.files.getlist('img'): print(file) count = count + 1 filename = file.filename print(filename) destination = "/".join([target, filename]) print(destination) file.save(destination) # ttt obj = preprocesses(TRAIN_FOLDER, PRE_FOLDER) nrof_images_total, nrof_successfully_aligned = obj.collect_data() print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned) print("Training Start") obj = training(PRE_FOLDER, MODEL_DIR, CLASSIFIER) get_file = obj.main_train() print('Saved classifier model to file "%s"' % get_file) # flash('User registeration succeeded please log in', 's_msg') return jsonify(success=["User Registration Success"], value=True) except Exception as e: return (str(e)) print(e) else: return render_template("login.html", data="please log in") return render_template("criminalinfo.html")
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from packages import classifier datadir = './pre_img' modeldir = './models/20170511-185253.pb' classifier_filename = './class/classifier.pkl' print("Training Start") obj = classifier.training(datadir, modeldir, classifier_filename) get_file = obj.main_train() print('Saved classifier model to file "%s"' % get_file) sys.exit("All Done")
import sys from packages.classifier import training datadir = './preprocessed_img' modeldir = './models/20180408-102900' classifier_filename = './class/classifier.pkl' eval_score_path = './class/accuracy_score.txt' print("Training Start") obj = training(datadir, modeldir, classifier_filename, eval_score_path) get_file = obj.main_train() print('Saved classifier model to file "%s"' % get_file) sys.exit("All Done")