def __init__(self, **kwargs): super().__init__(**kwargs) torch.set_num_threads(int(os.environ.get("OMP_NUM_THREADS", 1))) torch.backends.cudnn.benchmark = True self.avg_loss = AvgMeter(50) self.dtype = kwargs.get("dtype", None) # just for test for now
def __init__(self, **kwargs): super().__init__(**kwargs) hvd.init() torch.set_num_threads(int(os.environ.get("OMP_NUM_THREADS", 1))) torch.cuda.set_device(hvd.local_rank()) torch.backends.cudnn.benchmark = True self.avg_loss = AvgMeter(50)
def __init__(self, **kwargs): super().__init__(**kwargs) torch.set_num_threads(int(os.environ.get("OMP_NUM_THREADS", 1))) torch.backends.cudnn.benchmark = True self.avg_loss = AvgMeter(50) self.dtype = kwargs.get("dtype", None) # just for test for now self.model_name_temp = get_model_name() print("Models and tensorboard events files are saved to:\n ", self.model_name_temp)
def __init__(self, **kwargs): super().__init__(**kwargs) # torch.set_num_threads(int(os.environ.get("OMP_NUM_THREADS", 1))) if torch.cuda.is_available(): torch.cuda.set_device("cuda:0") else: torch.cuda.set_device("cpu") torch.backends.cudnn.benchmark = True self.avg_loss = AvgMeter(50) self.dtype = kwargs.get("dtype", None) # just for test for now self.writer = SummaryWriter()