Exemple #1
0
def quant_embedding(program, place, config=None, scope=None):
    """quantize lookup_table op parameters

    Args:
        program(paddle.static.Program): infer program
        scope(paddle.static.Scope, optional): Scope records the mapping between variable names and variables, similar to brackets in programming languages. Usually users can use `paddle.static.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_ . When ``None`` will use `paddle.static.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_. Default : ``None``.
        place(paddle.CPUPlace or paddle.CUDAPlace): This parameter represents the executor run on which device.
        config(dict, optional): config to quantize. The keys are 'quantize_op_types'. For op in quantize_op_types, you can define 'quantize_type', \
                'quantize_bits', 'dtype', 'threshold'. \
                ``quantize_type`` is  quantize type, supported types are ['abs_max'], default is "abs_max".
                ``quantize_bits`` supported bits are [8] and default is 8.
                ``dtype`` is quantize dtype, supported dtype are ['int8'], default is 'int8'.
                ``threshold`` is threshold to clip tensor before quant. When threshold is not set, \
                        tensor will not be clipped.

    Returns:
        None
    """
    config = config or {}
    config = _merge_config(copy.deepcopy(_default_config), config)
    scope = paddle.static.global_scope() if scope is None else scope

    graph = IrGraph(core.Graph(program.desc), for_test=True)
    quantize_params_map = {}
    all_op = graph.all_op_nodes()
    for op in all_op:
        if op.inputs == [] and op.outputs == []:
            continue
        op_type = op.name()
        if op_type in config['quantize_op_types']:
            weight_name = op.input('W')[0]
            if weight_name in quantize_params_map.values():
                continue
            embedding_node = graph._find_node_by_name(op.inputs,
                                                      op.input('W')[0])
            for op_node in embedding_node.outputs:
                if op_node.name() == 'fused_embedding_seq_pool':
                    _split_embedding_seq_pool(graph, op_node)
            if config[op_type]['quantize_type'] == 'abs_max':
                _quant_embedding_abs_max(graph, scope, place, config[op_type],
                                         weight_name, embedding_node)
            elif config[op_type]['quantize_type'] == 'log':
                _quant_embedding_log(graph, scope, place, config[op_type],
                                     weight_name, embedding_node)
            quantize_params_map[weight_name] = _get_quant_var_name(weight_name)
    for op in all_op:
        if op.name() == 'fused_embedding_seq_pool':
            graph.safe_remove_nodes(op)

    return graph.to_program()
Exemple #2
0
def create_quant_model(model,
                       params,
                       activation_quantize_type='moving_average_abs_max',
                       weight_quantize_type='channel_wise_abs_max',
                       save=False):
    place = paddle.CUDAPlace(0)
    scope = global_scope()
    exe = paddle.static.Executor(place)
    [inference_program, feed_target_names, fetch_targets
     ] = paddle.static.load_inference_model(path_prefix=None,
                                            executor=exe,
                                            model_filename=model,
                                            params_filename=params)
    graph = IrGraph(core.Graph(inference_program.desc), for_test=True)

    out_scale_op_list = [
        "conv2d",
        "depthwise_conv2d",
        "mul",
        "matmul",
        "relu",
        "leaky_relu",
        "relu6",
        "sigmoid",
        "tanh",
        "prelu",
        "swish",
        "softmax",
        "batch_norm",
        "layer_norm",
        "elementwise_add",
        "pool2d",
        "reshape2",
        "transpose2",
        "concat",
        "elementwise_mul",
        "scale",
        "slice",
        "hard_swish",
        "hard_sigmoid",
        "conv2d_transpose",
        "gru",
        "bilinear_interp",
        "nearest_interp",
        "trilinear_interp",
        "flatten",
        "flatten2",
        "transpose",
        "pad2d",
        "reshape",
        "layer_norm",
    ]
    op_real_in_out_name = {
        "conv2d": [["Input", "Filter"], ["Output"]],
        "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
        "conv2d_transpose": [["Input", "Filter"], ["Output"]],
        "mul": [["X", "Y"], ["Out"]],
        "matmul": [["X", "Y"], ["Out"]],
        "pool2d": [["X"], ["Out"]],
        "elementwise_add": [["X", "Y"], ["Out"]],
        "concat": [["X"], ["Out"]],
        "softmax": [["X"], ["Out"]],
        "argmax": [["X"], ["Out"]],
        "transpose": [["X"], ["Out"]],
        "equal": [["X", "Y"], ["Out"]],
        "gather": [["X"], ["Out"]],
        "greater_equal": [["X", "Y"], ["Out"]],
        "greater_than": [["X", "Y"], ["Out"]],
        "less_equal": [["X", "Y"], ["Out"]],
        "less_than": [["X", "Y"], ["Out"]],
        "mean": [["X"], ["Out"]],
        "not_equal": [["X", "Y"], ["Out"]],
        "reshape": [["X"], ["Out"]],
        "reshape2": [["X"], ["Out"]],
        "transpose2": [["X"], ["Out"]],
        "bilinear_interp": [["X"], ["Out"]],
        "nearest_interp": [["X"], ["Out"]],
        "trilinear_interp": [["X"], ["Out"]],
        "slice": [["Input"], ["Out"]],
        "squeeze": [["X"], ["Out"]],
        "elementwise_sub": [["X", "Y"], ["Out"]],
        "relu": [["X"], ["Out"]],
        "relu6": [["X"], ["Out"]],
        "leaky_relu": [["X"], ["Out"]],
        "prelu": [["X"], ["Out"]],
        "tanh": [["X"], ["Out"]],
        "swish": [["X"], ["Out"]],
        "dropout": [["X"], ["Out"]],
        "batch_norm": [["X"], ["Y"]],
        "layer_norm": [["X"], ["Y"]],
        "sigmoid": [["X"], ["Out"]],
        "elementwise_mul": [["X", "Y"], ["Out"]],
        "scale": [["X"], ["Out"]],
        "hard_swish": [["X"], ["Out"]],
        "hard_sigmoid": [["X"], ["Out"]],
        "gru": [["Input", "Weight"], ["Hidden"]],
        "lstm": [["Input", "Weight"], ["Hidden"]],
        "pad2d": [["X"], ["Out"]],
        "flatten": [["X"], ["Out"]],
        "flatten2": [["X"], ["Out"]],
    }

    def _get_op_output_var_names(op):
        """ """
        assert isinstance(op, (IrNode, Operator)), \
            "The input op should be IrNode or Operator."
        var_names = []
        op_name = op.name() if isinstance(op, IrNode) \
            else op.type
        if op_name not in op_real_in_out_name:
            return []

        name_list = op_real_in_out_name[op_name][1]
        for name in name_list:
            var_name = op.output(name)
            if isinstance(var_name, list):
                var_names.extend(var_name)
            else:
                var_names.append(var_name)
        return var_names

    transform_pass = QuantizationTransformPass(
        scope=scope,
        place=place,
        activation_quantize_type=activation_quantize_type,
        weight_quantize_type=weight_quantize_type)
    transform_pass.apply(graph)

    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() in out_scale_op_list:
            var_names = _get_op_output_var_names(op_node)
            for var_name in var_names:
                in_node = graph._find_node_by_name(op_node.outputs, var_name)
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

                op_node.op()._set_attr("out_threshold", 3.0)

    # Freeze graph for inference, but the weight of fc/conv is still float type.
    freeze_pass = QuantizationFreezePass(
        scope=scope, place=place, weight_quantize_type=weight_quantize_type)
    freeze_pass.apply(graph)

    main_program = graph.to_program()

    # modify fake_quantize_moving_average_abs_max(InScale) and fake_channel_wise_dequantize_max_abs(Scales)
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() == 'fake_quantize_moving_average_abs_max':
            var_name = op_node.input("InScale")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.array([1], dtype=np.float32), place)
        elif op_node.name() == 'fake_channel_wise_dequantize_max_abs':
            var_name = op_node.input("Scales")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.ones(tensor.shape(), dtype=np.float32), place)

    if save:
        fluid.io.save_inference_model('test_inference_model',
                                      feed_target_names,
                                      fetch_targets,
                                      exe,
                                      main_program=main_program)

    feed_vars = [
        main_program.global_block().var(name) for name in feed_target_names
    ]
    serialized_program = paddle.static.serialize_program(feed_vars,
                                                         fetch_targets,
                                                         program=main_program)
    serialized_params = paddle.static.serialize_persistables(
        feed_vars, fetch_targets, executor=exe, program=main_program)
    return serialized_program, serialized_params