def bbox_ciou(self, boxes1_x0y0x1y1, boxes2_x0y0x1y1): ''' 计算ciou = iou - p2/c2 - av :param boxes1: (batch_size, num_priors, 4) pred_x0y0x1y1 :param boxes2: (batch_size, num_priors, 4) label_x0y0x1y1 :return: ''' # 得到中心点坐标、宽高 boxes1 = P.concat( [(boxes1_x0y0x1y1[:, :, :2] + boxes1_x0y0x1y1[:, :, 2:]) * 0.5, boxes1_x0y0x1y1[:, :, 2:] - boxes1_x0y0x1y1[:, :, :2]], axis=-1) boxes2 = P.concat( [(boxes2_x0y0x1y1[:, :, :2] + boxes2_x0y0x1y1[:, :, 2:]) * 0.5, boxes2_x0y0x1y1[:, :, 2:] - boxes2_x0y0x1y1[:, :, :2]], axis=-1) # 两个矩形的面积 boxes1_area = (boxes1_x0y0x1y1[:, :, 2] - boxes1_x0y0x1y1[:, :, 0]) * ( boxes1_x0y0x1y1[:, :, 3] - boxes1_x0y0x1y1[:, :, 1]) boxes2_area = (boxes2_x0y0x1y1[:, :, 2] - boxes2_x0y0x1y1[:, :, 0]) * ( boxes2_x0y0x1y1[:, :, 3] - boxes2_x0y0x1y1[:, :, 1]) # 相交矩形的左上角坐标、右下角坐标 left_up = P.elementwise_max(boxes1_x0y0x1y1[:, :, :2], boxes2_x0y0x1y1[:, :, :2]) right_down = P.elementwise_min(boxes1_x0y0x1y1[:, :, 2:], boxes2_x0y0x1y1[:, :, 2:]) # 相交矩形的面积inter_area。iou inter_section = P.relu(right_down - left_up) inter_area = inter_section[:, :, 0] * inter_section[:, :, 1] union_area = boxes1_area + boxes2_area - inter_area iou = inter_area / union_area # 包围矩形的左上角坐标、右下角坐标 enclose_left_up = P.elementwise_min(boxes1_x0y0x1y1[:, :, :2], boxes2_x0y0x1y1[:, :, :2]) enclose_right_down = P.elementwise_max(boxes1_x0y0x1y1[:, :, 2:], boxes2_x0y0x1y1[:, :, 2:]) # 包围矩形的对角线的平方 enclose_wh = enclose_right_down - enclose_left_up enclose_c2 = P.pow(enclose_wh[:, :, 0], 2) + P.pow( enclose_wh[:, :, 1], 2) # 两矩形中心点距离的平方 p2 = P.pow(boxes1[:, :, 0] - boxes2[:, :, 0], 2) + P.pow( boxes1[:, :, 1] - boxes2[:, :, 1], 2) # 增加av。分母boxes2[:, :, 3]可能为0,所以加了极小的常数防止nan atan1 = P.atan(boxes1[:, :, 2] / (boxes1[:, :, 3] + 1e-9)) atan2 = P.atan(boxes2[:, :, 2] / (boxes2[:, :, 3] + 1e-9)) v = 4.0 * P.pow(atan1 - atan2, 2) / (math.pi**2) a = v / (1 - iou + v) ciou = iou - 1.0 * p2 / enclose_c2 - 1.0 * a * v return ciou
def _iou_hw(box_a, box_b, eps=1e-9): """计算两组矩形两两之间的iou以及长宽比信息 Args: box_a: (tensor) bounding boxes, Shape: [A, 4]. box_b: (tensor) bounding boxes, Shape: [B, 4]. Return: (tensor) iou, Shape: [A, B]. """ A = box_a.shape[0] B = box_b.shape[0] box_a_rb = L.reshape(box_a[:, 2:], (A, 1, 2)) box_a_rb = L.expand(box_a_rb, [1, B, 1]) box_b_rb = L.reshape(box_b[:, 2:], (1, B, 2)) box_b_rb = L.expand(box_b_rb, [A, 1, 1]) max_xy = L.elementwise_min(box_a_rb, box_b_rb) box_a_lu = L.reshape(box_a[:, :2], (A, 1, 2)) box_a_lu = L.expand(box_a_lu, [1, B, 1]) box_b_lu = L.reshape(box_b[:, :2], (1, B, 2)) box_b_lu = L.expand(box_b_lu, [A, 1, 1]) min_xy = L.elementwise_max(box_a_lu, box_b_lu) inter = L.relu(max_xy - min_xy) inter = inter[:, :, 0] * inter[:, :, 1] box_a_w = box_a[:, 2]-box_a[:, 0] box_a_h = box_a[:, 3]-box_a[:, 1] area_a = box_a_h * box_a_w area_a = L.reshape(area_a, (A, 1)) area_a = L.expand(area_a, [1, B]) # [A, B] box_b_w = box_b[:, 2]-box_b[:, 0] box_b_h = box_b[:, 3]-box_b[:, 1] area_b = box_b_h * box_b_w area_b = L.reshape(area_b, (1, B)) area_b = L.expand(area_b, [A, 1]) # [A, B] union = area_a + area_b - inter iou = inter / union # [A, B] iou取值0~1之间,iou越大越应该抑制 # 长宽比信息 atan1 = L.atan(box_a_h / (box_a_w + eps)) atan2 = L.atan(box_b_h / (box_b_w + eps)) atan1 = L.reshape(atan1, (A, 1)) atan1 = L.expand(atan1, [1, B]) # [A, B] atan2 = L.reshape(atan2, (1, B)) atan2 = L.expand(atan2, [A, 1]) # [A, B] v = 4.0 * L.pow(atan1 - atan2, 2) / (math.pi ** 2) # [A, B] v取值0~1之间,v越小越应该抑制 factor = 0.4 overlap = L.pow(iou, (1 - factor)) * L.pow(1.0 - v, factor) return overlap
def bbox_ciou(boxes1, boxes2): ''' 计算ciou = iou - p2/c2 - av :param boxes1: (8, 13, 13, 3, 4) pred_xywh :param boxes2: (8, 13, 13, 3, 4) label_xywh :return: ''' # 变成左上角坐标、右下角坐标 boxes1_x0y0x1y1 = P.concat([ boxes1[:, :, :, :, :2] - boxes1[:, :, :, :, 2:] * 0.5, boxes1[:, :, :, :, :2] + boxes1[:, :, :, :, 2:] * 0.5 ], axis=-1) boxes2_x0y0x1y1 = P.concat([ boxes2[:, :, :, :, :2] - boxes2[:, :, :, :, 2:] * 0.5, boxes2[:, :, :, :, :2] + boxes2[:, :, :, :, 2:] * 0.5 ], axis=-1) ''' 逐个位置比较boxes1_x0y0x1y1[..., :2]和boxes1_x0y0x1y1[..., 2:],即逐个位置比较[x0, y0]和[x1, y1],小的留下。 比如留下了[x0, y0] 这一步是为了避免一开始w h 是负数,导致x0y0成了右下角坐标,x1y1成了左上角坐标。 ''' boxes1_x0y0x1y1 = P.concat([ P.elementwise_min(boxes1_x0y0x1y1[:, :, :, :, :2], boxes1_x0y0x1y1[:, :, :, :, 2:]), P.elementwise_max(boxes1_x0y0x1y1[:, :, :, :, :2], boxes1_x0y0x1y1[:, :, :, :, 2:]) ], axis=-1) boxes2_x0y0x1y1 = P.concat([ P.elementwise_min(boxes2_x0y0x1y1[:, :, :, :, :2], boxes2_x0y0x1y1[:, :, :, :, 2:]), P.elementwise_max(boxes2_x0y0x1y1[:, :, :, :, :2], boxes2_x0y0x1y1[:, :, :, :, 2:]) ], axis=-1) # 两个矩形的面积 boxes1_area = ( boxes1_x0y0x1y1[:, :, :, :, 2] - boxes1_x0y0x1y1[:, :, :, :, 0]) * ( boxes1_x0y0x1y1[:, :, :, :, 3] - boxes1_x0y0x1y1[:, :, :, :, 1]) boxes2_area = ( boxes2_x0y0x1y1[:, :, :, :, 2] - boxes2_x0y0x1y1[:, :, :, :, 0]) * ( boxes2_x0y0x1y1[:, :, :, :, 3] - boxes2_x0y0x1y1[:, :, :, :, 1]) # 相交矩形的左上角坐标、右下角坐标,shape 都是 (8, 13, 13, 3, 2) left_up = P.elementwise_max(boxes1_x0y0x1y1[:, :, :, :, :2], boxes2_x0y0x1y1[:, :, :, :, :2]) right_down = P.elementwise_min(boxes1_x0y0x1y1[:, :, :, :, 2:], boxes2_x0y0x1y1[:, :, :, :, 2:]) # 相交矩形的面积inter_area。iou inter_section = P.relu(right_down - left_up) inter_area = inter_section[:, :, :, :, 0] * inter_section[:, :, :, :, 1] union_area = boxes1_area + boxes2_area - inter_area iou = inter_area / (union_area + 1e-9) # 包围矩形的左上角坐标、右下角坐标,shape 都是 (8, 13, 13, 3, 2) enclose_left_up = P.elementwise_min(boxes1_x0y0x1y1[:, :, :, :, :2], boxes2_x0y0x1y1[:, :, :, :, :2]) enclose_right_down = P.elementwise_max(boxes1_x0y0x1y1[:, :, :, :, 2:], boxes2_x0y0x1y1[:, :, :, :, 2:]) # 包围矩形的对角线的平方 enclose_wh = enclose_right_down - enclose_left_up enclose_c2 = P.pow(enclose_wh[:, :, :, :, 0], 2) + P.pow( enclose_wh[:, :, :, :, 1], 2) # 两矩形中心点距离的平方 p2 = P.pow(boxes1[:, :, :, :, 0] - boxes2[:, :, :, :, 0], 2) + P.pow( boxes1[:, :, :, :, 1] - boxes2[:, :, :, :, 1], 2) # 增加av。 atan1 = P.atan(boxes1[:, :, :, :, 2] / (boxes1[:, :, :, :, 3] + 1e-9)) atan2 = P.atan(boxes2[:, :, :, :, 2] / (boxes2[:, :, :, :, 3] + 1e-9)) v = 4.0 * P.pow(atan1 - atan2, 2) / (math.pi**2) a = v / (1 - iou + v) ciou = iou - 1.0 * p2 / enclose_c2 - 1.0 * a * v return ciou
def __iou_loss(self, pred, targets, positive_mask, weights=None): """ Calculate the loss for location prediction Args: pred (Variables): bounding boxes prediction targets (Variables): targets for positive samples positive_mask (Variables): mask of positive samples weights (Variables): weights for each positive samples Return: loss (Varialbes): location loss """ positive_mask = fluid.layers.reshape(positive_mask, (-1, )) # [批大小*所有格子数, ] plw = pred[:, 0] * positive_mask # [批大小*所有格子数, ], 预测的l pth = pred[:, 1] * positive_mask # [批大小*所有格子数, ], 预测的t prw = pred[:, 2] * positive_mask # [批大小*所有格子数, ], 预测的r pbh = pred[:, 3] * positive_mask # [批大小*所有格子数, ], 预测的b tlw = targets[:, 0] * positive_mask # [批大小*所有格子数, ], 真实的l tth = targets[:, 1] * positive_mask # [批大小*所有格子数, ], 真实的t trw = targets[:, 2] * positive_mask # [批大小*所有格子数, ], 真实的r tbh = targets[:, 3] * positive_mask # [批大小*所有格子数, ], 真实的b tlw.stop_gradient = True trw.stop_gradient = True tth.stop_gradient = True tbh.stop_gradient = True area_target = (tlw + trw) * (tth + tbh) # [批大小*所有格子数, ], 真实的面积 area_predict = (plw + prw) * (pth + pbh) # [批大小*所有格子数, ], 预测的面积 ilw = fluid.layers.elementwise_min(plw, tlw) # [批大小*所有格子数, ], 相交矩形的l irw = fluid.layers.elementwise_min(prw, trw) # [批大小*所有格子数, ], 相交矩形的r ith = fluid.layers.elementwise_min(pth, tth) # [批大小*所有格子数, ], 相交矩形的t ibh = fluid.layers.elementwise_min(pbh, tbh) # [批大小*所有格子数, ], 相交矩形的b clw = fluid.layers.elementwise_max(plw, tlw) # [批大小*所有格子数, ], 包围矩形的l crw = fluid.layers.elementwise_max(prw, trw) # [批大小*所有格子数, ], 包围矩形的r cth = fluid.layers.elementwise_max(pth, tth) # [批大小*所有格子数, ], 包围矩形的t cbh = fluid.layers.elementwise_max(pbh, tbh) # [批大小*所有格子数, ], 包围矩形的b area_inter = (ilw + irw) * (ith + ibh) # [批大小*所有格子数, ], 相交矩形的面积 ious = (area_inter + 1.0) / (area_predict + area_target - area_inter + 1.0) ious = ious * positive_mask if self.iou_loss_type.lower() == "linear_iou": loss = 1.0 - ious elif self.iou_loss_type.lower() == "giou": area_uniou = area_predict + area_target - area_inter area_circum = (clw + crw) * (cth + cbh) + 1e-7 giou = ious - (area_circum - area_uniou) / area_circum loss = 1.0 - giou elif self.iou_loss_type.lower() == "iou": loss = 0.0 - fluid.layers.log(ious) elif self.iou_loss_type.lower() == "ciou": # 预测的矩形。cx_cy_w_h格式,以格子中心点为坐标原点。 pred_cx = (prw - plw) * 0.5 pred_cy = (pbh - pth) * 0.5 pred_w = (plw + prw) pred_h = (pth + pbh) pred_cx = L.reshape(pred_cx, (-1, 1)) pred_cy = L.reshape(pred_cy, (-1, 1)) pred_w = L.reshape(pred_w, (-1, 1)) pred_h = L.reshape(pred_h, (-1, 1)) pred_cx_cy_w_h = L.concat([pred_cx, pred_cy, pred_w, pred_h], -1) # [批大小*所有格子数, 4] # 真实的矩形。cx_cy_w_h格式,以格子中心点为坐标原点。 true_cx = (trw - tlw) * 0.5 true_cy = (tbh - tth) * 0.5 true_w = (tlw + trw) true_h = (tth + tbh) true_cx = L.reshape(true_cx, (-1, 1)) true_cy = L.reshape(true_cy, (-1, 1)) true_w = L.reshape(true_w, (-1, 1)) true_h = L.reshape(true_h, (-1, 1)) true_cx_cy_w_h = L.concat([true_cx, true_cy, true_w, true_h], -1) # [批大小*所有格子数, 4] # 预测的矩形。x0y0x1y1格式,以格子中心点为坐标原点。 boxes1_x0y0x1y1 = L.concat([ pred_cx_cy_w_h[:, :2] - pred_cx_cy_w_h[:, 2:] * 0.5, pred_cx_cy_w_h[:, :2] + pred_cx_cy_w_h[:, 2:] * 0.5 ], axis=-1) # 真实的矩形。x0y0x1y1格式,以格子中心点为坐标原点。 boxes2_x0y0x1y1 = L.concat([ true_cx_cy_w_h[:, :2] - true_cx_cy_w_h[:, 2:] * 0.5, true_cx_cy_w_h[:, :2] + true_cx_cy_w_h[:, 2:] * 0.5 ], axis=-1) # 包围矩形的左上角坐标、右下角坐标,shape 都是 (批大小*所有格子数, 2) enclose_left_up = L.elementwise_min(boxes1_x0y0x1y1[:, :2], boxes2_x0y0x1y1[:, :2]) enclose_right_down = L.elementwise_max(boxes1_x0y0x1y1[:, 2:], boxes2_x0y0x1y1[:, 2:]) # 包围矩形的对角线的平方 enclose_wh = enclose_right_down - enclose_left_up enclose_c2 = L.pow(enclose_wh[:, 0], 2) + L.pow( enclose_wh[:, 1], 2) # 两矩形中心点距离的平方 p2 = L.pow(pred_cx_cy_w_h[:, 0] - true_cx_cy_w_h[:, 0], 2) \ + L.pow(pred_cx_cy_w_h[:, 1] - true_cx_cy_w_h[:, 1], 2) # 增加av。加上除0保护防止nan。 atan1 = L.atan(pred_cx_cy_w_h[:, 2] / (pred_cx_cy_w_h[:, 3] + 1e-9)) atan2 = L.atan(true_cx_cy_w_h[:, 2] / (true_cx_cy_w_h[:, 3] + 1e-9)) v = 4.0 * L.pow(atan1 - atan2, 2) / (math.pi**2) a = v / (1 - ious + v) ciou = ious - 1.0 * p2 / (enclose_c2 + 1e-9) - 1.0 * a * v loss = 1.0 - ciou else: raise KeyError loss = fluid.layers.reshape(loss, (-1, 1)) # [批大小*所有格子数, 1] if weights is not None: loss = loss * weights return loss