Exemple #1
0
 def test_l2decay_regularizer(self):
     program = framework.Program()
     block = program.global_block()
     mul_x = block.create_parameter(
         dtype="float32",
         shape=[5, 10],
         lod_level=0,
         name="mul.x",
         regularizer=regularizer.L1DecayRegularizer(0.5))
     self.assertTrue(mul_x.regularizer is not None)
     self.assertTrue(
         isinstance(mul_x.regularizer, regularizer.L1DecayRegularizer))
     mul_y = block.create_var(
         dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
     mul_out = block.create_var(
         dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
     block.append_op(
         type="mul",
         inputs={"X": mul_x,
                 "Y": mul_y},
         outputs={"Out": mul_out},
         attrs={"x_num_col_dims": 1})
     mean_out = block.create_var(
         dtype="float32", shape=[1], lod_level=0, name="mean.out")
     block.append_op(
         type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
     params_grads = append_backward(mean_out)
     self.assertEqual(len(params_grads), 1)
     count_ops = len(block.ops)
     params_grads = optimizer.append_regularization_ops(params_grads)
     self.assertEqual(len(params_grads), 1)
     self.assertEqual(len(block.ops), count_ops + 3)
     self.assertEqual(block.ops[-1].type, 'sum')
     self.assertEqual(block.ops[-2].type, 'scale')
     self.assertEqual(block.ops[-3].type, 'sign')
Exemple #2
0
 def test_l2decay_regularizer(self):
     program = framework.Program()
     block = program.global_block()
     mul_x = block.create_parameter(
         dtype="float32",
         shape=[5, 10],
         lod_level=0,
         name="mul.x",
         regularizer=regularizer.L1DecayRegularizer(0.5))
     self.assertTrue(mul_x.regularizer is not None)
     self.assertTrue(
         isinstance(mul_x.regularizer, regularizer.L1DecayRegularizer))
     mul_y = block.create_var(
         dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
     mul_out = block.create_var(
         dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
     block.append_op(
         type="mul",
         inputs={"X": mul_x,
                 "Y": mul_y},
         outputs={"Out": mul_out},
         attrs={"x_num_col_dims": 1})
     mean_out = block.create_var(
         dtype="float32", shape=[1], lod_level=0, name="mean.out")
     block.append_op(
         type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
     params_grads = append_backward(mean_out)
     self.assertEqual(len(params_grads), 1)
     count_ops = len(block.ops)
     params_grads = optimizer.append_regularization_ops(params_grads)
     self.assertEqual(len(params_grads), 1)
     self.assertEqual(len(block.ops), count_ops + 3)
     self.assertEqual(block.ops[-1].type, 'elementwise_add')
     self.assertEqual(block.ops[-2].type, 'scale')
     self.assertEqual(block.ops[-3].type, 'sign')