Exemple #1
0
 def get_optimizer_dygraph(self, parameter_list):
     optimizer = ExponentialMovingAverage(0.999)
     return optimizer
Exemple #2
0
def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    if FLAGS.enable_ce:
        random.seed(0)
        np.random.seed(0)

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    save_only = getattr(cfg, 'save_prediction_only', False)
    if save_only:
        raise NotImplementedError('The config file only support prediction,'
                                  ' training stage is not implemented now')
    main_arch = cfg.architecture

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    if FLAGS.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            if FLAGS.fp16:
                assert (getattr(model.backbone, 'norm_type', None)
                        != 'affine_channel'), \
                    '--fp16 currently does not support affine channel, ' \
                    ' please modify backbone settings to use batch norm'

            with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
                inputs_def = cfg['TrainReader']['inputs_def']
                feed_vars, train_loader = model.build_inputs(**inputs_def)
                train_fetches = model.train(feed_vars)
                loss = train_fetches['loss']
                if FLAGS.fp16:
                    loss *= ctx.get_loss_scale_var()
                lr = lr_builder()
                optimizer = optim_builder(lr)
                optimizer.minimize(loss)

                if FLAGS.fp16:
                    loss /= ctx.get_loss_scale_var()

            if 'use_ema' in cfg and cfg['use_ema']:
                global_steps = _decay_step_counter()
                ema = ExponentialMovingAverage(
                    cfg['ema_decay'], thres_steps=global_steps)
                ema.update()

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                inputs_def = cfg['EvalReader']['inputs_def']
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(cfg.EvalReader, devices_num=1)
        eval_loader.set_sample_list_generator(eval_reader, place)

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
            extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
        if cfg.metric == 'WIDERFACE':
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = False
    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1
    if FLAGS.dist:
        dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog,
                                             train_prog)
        exec_strategy.num_threads = 1

    exe.run(startup_prog)
    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    if FLAGS.eval:
        compiled_eval_prog = fluid.CompiledProgram(eval_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

    ignore_params = cfg.finetune_exclude_pretrained_params \
                 if 'finetune_exclude_pretrained_params' in cfg else []

    start_iter = 0
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()
    elif cfg.pretrain_weights and fuse_bn and not ignore_params:
        checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
    elif cfg.pretrain_weights:
        checkpoint.load_params(
            exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params)

    train_reader = create_reader(
        cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num,
        cfg,
        devices_num=devices_num)
    train_loader.set_sample_list_generator(train_reader, place)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_loader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
    time_stat = deque(maxlen=cfg.log_smooth_window)
    best_box_ap_list = [0.0, 0]  #[map, iter]

    # use VisualDL to log data
    if FLAGS.use_vdl:
        from visualdl import LogWriter
        vdl_writer = LogWriter(FLAGS.vdl_log_dir)
        vdl_loss_step = 0
        vdl_mAP_step = 0

    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(compiled_train_prog, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}

        # use vdl-paddle to log loss
        if FLAGS.use_vdl:
            if it % cfg.log_iter == 0:
                for loss_name, loss_value in stats.items():
                    vdl_writer.add_scalar(loss_name, loss_value, vdl_loss_step)
                vdl_loss_step += 1

        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        # NOTE : profiler tools, used for benchmark
        if FLAGS.is_profiler and it == 5:
            profiler.start_profiler("All")
        elif FLAGS.is_profiler and it == 10:
            profiler.stop_profiler("total", FLAGS.profiler_path)
            return


        if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
           and (not FLAGS.dist or trainer_id == 0):
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            if 'use_ema' in cfg and cfg['use_ema']:
                exe.run(ema.apply_program)
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))

            if FLAGS.eval:
                # evaluation
                resolution = None
                if 'Mask' in cfg.architecture:
                    resolution = model.mask_head.resolution
                results = eval_run(
                    exe,
                    compiled_eval_prog,
                    eval_loader,
                    eval_keys,
                    eval_values,
                    eval_cls,
                    cfg,
                    resolution=resolution)
                box_ap_stats = eval_results(
                    results, cfg.metric, cfg.num_classes, resolution,
                    is_bbox_normalized, FLAGS.output_eval, map_type,
                    cfg['EvalReader']['dataset'])

                # use vdl_paddle to log mAP
                if FLAGS.use_vdl:
                    vdl_writer.add_scalar("mAP", box_ap_stats[0], vdl_mAP_step)
                    vdl_mAP_step += 1

                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

            if 'use_ema' in cfg and cfg['use_ema']:
                exe.run(ema.restore_program)

    train_loader.reset()
Exemple #3
0
            # 建立损失函数
            y_true = P.data(name='y_true',
                            shape=[-1, 8, 28, 28],
                            append_batch_size=False,
                            dtype='float32')
            # 先把差值逐项平方,可以用P.pow()这个op,也可以用python里的运算符**。
            mseloss = P.pow(y_true - act02_out_tensor, 2)
            mseloss = P.reduce_mean(mseloss)  # 再求平均,即mse损失函数

            # 优化器
            optimizer = fluid.optimizer.SGD(learning_rate=lr)
            optimizer.minimize(mseloss)

            # ema
            global_steps = _decay_step_counter()
            ema = ExponentialMovingAverage(ema_decay, thres_steps=global_steps)
            ema.update()

    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            # 重新建立一次网络,用相同的张量名,不用写损失层
            inputs = P.data(name='input_1',
                            shape=[-1, 3, 28, 28],
                            append_batch_size=False,
                            dtype='float32')
            conv01_out_tensor = fluid.layers.conv2d(
                input=inputs,
                num_filters=8,
                filter_size=1,
                stride=1,