Exemple #1
0
 def __init__(self, in_channels, num_classes, name=None):
     super(InceptionAux, self).__init__()
     self.num_classes = num_classes
     self.pool0 = AvgPool2D(pool_size=5, pool_stride=3)
     self.conv0 = ConvBNLayer(in_channels, 128, 1, name=name + '.conv0')
     self.conv1 = ConvBNLayer(128, 768, 5, name=name + '.conv1')
     self.pool1 = AvgPool2D(global_pooling=True)
Exemple #2
0
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = AvgPool2D(kernel_size=2,
                                     stride=2,
                                     padding=0,
                                     ceil_mode=True)
        self._conv = Conv2D(in_channels=num_channels,
                            out_channels=num_filters,
                            kernel_size=filter_size,
                            stride=stride,
                            padding=(filter_size - 1) // 2,
                            groups=groups,
                            weight_attr=ParamAttr(name=name + "_weights"),
                            bias_attr=False)
        bn_name = name + '_bn'
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
Exemple #3
0
 def __init__(self,
              num_channels,
              num_filters,
              filter_size,
              stride=1,
              groups=1,
              is_vd_mode=False,
              act=None,
              lr_mult=1.0,
              data_format="NCHW"):
     super().__init__()
     self.is_vd_mode = is_vd_mode
     self.act = act
     self.avg_pool = AvgPool2D(
         kernel_size=2, stride=2, padding=0, ceil_mode=True)
     self.conv = Conv2D(
         in_channels=num_channels,
         out_channels=num_filters,
         kernel_size=filter_size,
         stride=stride,
         padding=(filter_size - 1) // 2,
         groups=groups,
         weight_attr=ParamAttr(learning_rate=lr_mult),
         bias_attr=False,
         data_format=data_format)
     self.bn = BatchNorm(
         num_filters,
         param_attr=ParamAttr(learning_rate=lr_mult),
         bias_attr=ParamAttr(learning_rate=lr_mult),
         data_layout=data_format)
     self.relu = nn.ReLU()
Exemple #4
0
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: int,
                 stride: int = 1,
                 dilation: int = 1,
                 groups: int = 1,
                 is_vd_mode: bool = False,
                 act: str = None,
                 name: str = None):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self._conv = Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2 if dilation == 1 else 0,
            dilation=dilation,
            groups=groups,
            bias_attr=False)

        self._batch_norm = SyncBatchNorm(out_channels)
        self._act_op = Activation(act=act)
Exemple #5
0
    def __init__(self, num_classes=1000, with_pool=True):
        super(GoogLeNet, self).__init__()
        self.num_classes = num_classes
        self.with_pool = with_pool

        self._conv = ConvLayer(3, 64, 7, 2)
        self._pool = MaxPool2D(kernel_size=3, stride=2)
        self._conv_1 = ConvLayer(64, 64, 1)
        self._conv_2 = ConvLayer(64, 192, 3)

        self._ince3a = Inception(192, 192, 64, 96, 128, 16, 32, 32)
        self._ince3b = Inception(256, 256, 128, 128, 192, 32, 96, 64)

        self._ince4a = Inception(480, 480, 192, 96, 208, 16, 48, 64)
        self._ince4b = Inception(512, 512, 160, 112, 224, 24, 64, 64)
        self._ince4c = Inception(512, 512, 128, 128, 256, 24, 64, 64)
        self._ince4d = Inception(512, 512, 112, 144, 288, 32, 64, 64)
        self._ince4e = Inception(528, 528, 256, 160, 320, 32, 128, 128)

        self._ince5a = Inception(832, 832, 256, 160, 320, 32, 128, 128)
        self._ince5b = Inception(832, 832, 384, 192, 384, 48, 128, 128)

        if with_pool:
            # out
            self._pool_5 = AdaptiveAvgPool2D(1)
            # out1
            self._pool_o1 = AvgPool2D(kernel_size=5, stride=3)
            # out2
            self._pool_o2 = AvgPool2D(kernel_size=5, stride=3)

        if num_classes > 0:
            # out
            self._drop = Dropout(p=0.4, mode="downscale_in_infer")
            self._fc_out = Linear(
                1024, num_classes, weight_attr=xavier(1024, 1))

            # out1
            self._conv_o1 = ConvLayer(512, 128, 1)
            self._fc_o1 = Linear(1152, 1024, weight_attr=xavier(2048, 1))
            self._drop_o1 = Dropout(p=0.7, mode="downscale_in_infer")
            self._out1 = Linear(1024, num_classes, weight_attr=xavier(1024, 1))

            # out2
            self._conv_o2 = ConvLayer(528, 128, 1)
            self._fc_o2 = Linear(1152, 1024, weight_attr=xavier(2048, 1))
            self._drop_o2 = Dropout(p=0.7, mode="downscale_in_infer")
            self._out2 = Linear(1024, num_classes, weight_attr=xavier(1024, 1))
Exemple #6
0
    def __init__(self, num_channels, channels_7x7):
        super().__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=192,
                                     filter_size=1,
                                     act="relu")

        self.branch7x7_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=channels_7x7,
                                       filter_size=1,
                                       stride=1,
                                       act="relu")
        self.branch7x7_2 = ConvBNLayer(num_channels=channels_7x7,
                                       num_filters=channels_7x7,
                                       filter_size=(1, 7),
                                       stride=1,
                                       padding=(0, 3),
                                       act="relu")
        self.branch7x7_3 = ConvBNLayer(num_channels=channels_7x7,
                                       num_filters=192,
                                       filter_size=(7, 1),
                                       stride=1,
                                       padding=(3, 0),
                                       act="relu")

        self.branch7x7dbl_1 = ConvBNLayer(num_channels=num_channels,
                                          num_filters=channels_7x7,
                                          filter_size=1,
                                          act="relu")
        self.branch7x7dbl_2 = ConvBNLayer(num_channels=channels_7x7,
                                          num_filters=channels_7x7,
                                          filter_size=(7, 1),
                                          padding=(3, 0),
                                          act="relu")
        self.branch7x7dbl_3 = ConvBNLayer(num_channels=channels_7x7,
                                          num_filters=channels_7x7,
                                          filter_size=(1, 7),
                                          padding=(0, 3),
                                          act="relu")
        self.branch7x7dbl_4 = ConvBNLayer(num_channels=channels_7x7,
                                          num_filters=channels_7x7,
                                          filter_size=(7, 1),
                                          padding=(3, 0),
                                          act="relu")
        self.branch7x7dbl_5 = ConvBNLayer(num_channels=channels_7x7,
                                          num_filters=192,
                                          filter_size=(1, 7),
                                          padding=(0, 3),
                                          act="relu")

        self.branch_pool = AvgPool2D(kernel_size=3,
                                     stride=1,
                                     padding=1,
                                     exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                                            num_filters=192,
                                            filter_size=1,
                                            act="relu")
Exemple #7
0
    def __init__(self, num_channels, num_output_features):
        super(TransitionLayer, self).__init__()

        self.conv_ac_func = BNACConvLayer(num_channels=num_channels,
                                          num_filters=num_output_features,
                                          filter_size=1,
                                          pad=0,
                                          stride=1)

        self.pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0)
 def __init__(self, name=None):
     super(InceptionB, self).__init__()
     self._pool = AvgPool2D(kernel_size=3, stride=1, padding=1)
     self._conv1 = ConvBNLayer(
         1024, 128, 1, act="relu", name="inception_b" + name + "_1x1")
     self._conv2 = ConvBNLayer(
         1024, 384, 1, act="relu", name="inception_b" + name + "_1x1_2")
     self._conv3_1 = ConvBNLayer(
         1024,
         192,
         1,
         act="relu",
         name="inception_b" + name + "_1x7_reduce")
     self._conv3_2 = ConvBNLayer(
         192,
         224, (1, 7),
         padding=(0, 3),
         act="relu",
         name="inception_b" + name + "_1x7")
     self._conv3_3 = ConvBNLayer(
         224,
         256, (7, 1),
         padding=(3, 0),
         act="relu",
         name="inception_b" + name + "_7x1")
     self._conv4_1 = ConvBNLayer(
         1024,
         192,
         1,
         act="relu",
         name="inception_b" + name + "_7x1_2_reduce")
     self._conv4_2 = ConvBNLayer(
         192,
         192, (1, 7),
         padding=(0, 3),
         act="relu",
         name="inception_b" + name + "_1x7_2")
     self._conv4_3 = ConvBNLayer(
         192,
         224, (7, 1),
         padding=(3, 0),
         act="relu",
         name="inception_b" + name + "_7x1_2")
     self._conv4_4 = ConvBNLayer(
         224,
         224, (1, 7),
         padding=(0, 3),
         act="relu",
         name="inception_b" + name + "_1x7_3")
     self._conv4_5 = ConvBNLayer(
         224,
         256, (7, 1),
         padding=(3, 0),
         act="relu",
         name="inception_b" + name + "_7x1_3")
Exemple #9
0
    def __init__(self, num_channels):
        super().__init__()
        self.branch1x1 = ConvNormActivation(in_channels=num_channels,
                                            out_channels=320,
                                            kernel_size=1,
                                            padding=0,
                                            activation_layer=nn.ReLU)
        self.branch3x3_1 = ConvNormActivation(in_channels=num_channels,
                                              out_channels=384,
                                              kernel_size=1,
                                              padding=0,
                                              activation_layer=nn.ReLU)
        self.branch3x3_2a = ConvNormActivation(in_channels=384,
                                               out_channels=384,
                                               kernel_size=(1, 3),
                                               padding=(0, 1),
                                               activation_layer=nn.ReLU)
        self.branch3x3_2b = ConvNormActivation(in_channels=384,
                                               out_channels=384,
                                               kernel_size=(3, 1),
                                               padding=(1, 0),
                                               activation_layer=nn.ReLU)

        self.branch3x3dbl_1 = ConvNormActivation(in_channels=num_channels,
                                                 out_channels=448,
                                                 kernel_size=1,
                                                 padding=0,
                                                 activation_layer=nn.ReLU)
        self.branch3x3dbl_2 = ConvNormActivation(in_channels=448,
                                                 out_channels=384,
                                                 kernel_size=3,
                                                 padding=1,
                                                 activation_layer=nn.ReLU)
        self.branch3x3dbl_3a = ConvNormActivation(in_channels=384,
                                                  out_channels=384,
                                                  kernel_size=(1, 3),
                                                  padding=(0, 1),
                                                  activation_layer=nn.ReLU)
        self.branch3x3dbl_3b = ConvNormActivation(in_channels=384,
                                                  out_channels=384,
                                                  kernel_size=(3, 1),
                                                  padding=(1, 0),
                                                  activation_layer=nn.ReLU)

        self.branch_pool = AvgPool2D(kernel_size=3,
                                     stride=1,
                                     padding=1,
                                     exclusive=False)
        self.branch_pool_conv = ConvNormActivation(in_channels=num_channels,
                                                   out_channels=192,
                                                   kernel_size=1,
                                                   padding=0,
                                                   activation_layer=nn.ReLU)
    def __init__(self, num_channels, pool_features, name=None):
        super(InceptionA, self).__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=64,
                                     filter_size=1,
                                     act="relu",
                                     name="inception_a_branch1x1_" + name)
        self.branch5x5_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=48,
                                       filter_size=1,
                                       act="relu",
                                       name="inception_a_branch5x5_1_" + name)
        self.branch5x5_2 = ConvBNLayer(num_channels=48,
                                       num_filters=64,
                                       filter_size=5,
                                       padding=2,
                                       act="relu",
                                       name="inception_a_branch5x5_2_" + name)

        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
                                          num_filters=64,
                                          filter_size=1,
                                          act="relu",
                                          name="inception_a_branch3x3dbl_1_" +
                                          name)
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=64,
                                          num_filters=96,
                                          filter_size=3,
                                          padding=1,
                                          act="relu",
                                          name="inception_a_branch3x3dbl_2_" +
                                          name)
        self.branch3x3dbl_3 = ConvBNLayer(num_channels=96,
                                          num_filters=96,
                                          filter_size=3,
                                          padding=1,
                                          act="relu",
                                          name="inception_a_branch3x3dbl_3_" +
                                          name)
        self.branch_pool = AvgPool2D(kernel_size=3,
                                     stride=1,
                                     padding=1,
                                     exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                                            num_filters=pool_features,
                                            filter_size=1,
                                            act="relu",
                                            name="inception_a_branch_pool_" +
                                            name)
Exemple #11
0
    def __init__(self, in_channels, c7, name=None):
        super(Fid_inceptionC, self).__init__()
        self.branch1x1 = ConvBNLayer(in_channels,
                                     192,
                                     1,
                                     name=name + '.branch1x1')

        self.branch7x7_1 = ConvBNLayer(in_channels,
                                       c7,
                                       1,
                                       name=name + '.branch7x7_1')
        self.branch7x7_2 = ConvBNLayer(c7,
                                       c7, (1, 7),
                                       padding=(0, 3),
                                       name=name + '.branch7x7_2')
        self.branch7x7_3 = ConvBNLayer(c7,
                                       192, (7, 1),
                                       padding=(3, 0),
                                       name=name + '.branch7x7_3')

        self.branch7x7dbl_1 = ConvBNLayer(in_channels,
                                          c7,
                                          1,
                                          name=name + '.branch7x7dbl_1')
        self.branch7x7dbl_2 = ConvBNLayer(c7,
                                          c7, (7, 1),
                                          padding=(3, 0),
                                          name=name + '.branch7x7dbl_2')
        self.branch7x7dbl_3 = ConvBNLayer(c7,
                                          c7, (1, 7),
                                          padding=(0, 3),
                                          name=name + '.branch7x7dbl_3')
        self.branch7x7dbl_4 = ConvBNLayer(c7,
                                          c7, (7, 1),
                                          padding=(3, 0),
                                          name=name + '.branch7x7dbl_4')
        self.branch7x7dbl_5 = ConvBNLayer(c7,
                                          192, (1, 7),
                                          padding=(0, 3),
                                          name=name + '.branch7x7dbl_5')

        self.branch_pool0 = AvgPool2D(pool_size=3,
                                      pool_stride=1,
                                      pool_padding=1,
                                      exclusive=True)
        self.branch_pool = ConvBNLayer(in_channels,
                                       192,
                                       1,
                                       name=name + '.branch_pool')
Exemple #12
0
    def __init__(self, num_channels):
        super().__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=320,
                                     filter_size=1,
                                     act="relu")
        self.branch3x3_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=384,
                                       filter_size=1,
                                       act="relu")
        self.branch3x3_2a = ConvBNLayer(num_channels=384,
                                        num_filters=384,
                                        filter_size=(1, 3),
                                        padding=(0, 1),
                                        act="relu")
        self.branch3x3_2b = ConvBNLayer(num_channels=384,
                                        num_filters=384,
                                        filter_size=(3, 1),
                                        padding=(1, 0),
                                        act="relu")

        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
                                          num_filters=448,
                                          filter_size=1,
                                          act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=448,
                                          num_filters=384,
                                          filter_size=3,
                                          padding=1,
                                          act="relu")
        self.branch3x3dbl_3a = ConvBNLayer(num_channels=384,
                                           num_filters=384,
                                           filter_size=(1, 3),
                                           padding=(0, 1),
                                           act="relu")
        self.branch3x3dbl_3b = ConvBNLayer(num_channels=384,
                                           num_filters=384,
                                           filter_size=(3, 1),
                                           padding=(1, 0),
                                           act="relu")
        self.branch_pool = AvgPool2D(kernel_size=3,
                                     stride=1,
                                     padding=1,
                                     exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                                            num_filters=192,
                                            filter_size=1,
                                            act="relu")
 def __init__(self, name=None):
     super(InceptionC, self).__init__()
     self._pool = AvgPool2D(kernel_size=3, stride=1, padding=1)
     self._conv1 = ConvBNLayer(
         1536, 256, 1, act="relu", name="inception_c" + name + "_1x1")
     self._conv2 = ConvBNLayer(
         1536, 256, 1, act="relu", name="inception_c" + name + "_1x1_2")
     self._conv3_0 = ConvBNLayer(
         1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_3")
     self._conv3_1 = ConvBNLayer(
         384,
         256, (1, 3),
         padding=(0, 1),
         act="relu",
         name="inception_c" + name + "_1x3")
     self._conv3_2 = ConvBNLayer(
         384,
         256, (3, 1),
         padding=(1, 0),
         act="relu",
         name="inception_c" + name + "_3x1")
     self._conv4_0 = ConvBNLayer(
         1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_4")
     self._conv4_00 = ConvBNLayer(
         384,
         448, (1, 3),
         padding=(0, 1),
         act="relu",
         name="inception_c" + name + "_1x3_2")
     self._conv4_000 = ConvBNLayer(
         448,
         512, (3, 1),
         padding=(1, 0),
         act="relu",
         name="inception_c" + name + "_3x1_2")
     self._conv4_1 = ConvBNLayer(
         512,
         256, (1, 3),
         padding=(0, 1),
         act="relu",
         name="inception_c" + name + "_1x3_3")
     self._conv4_2 = ConvBNLayer(
         512,
         256, (3, 1),
         padding=(1, 0),
         act="relu",
         name="inception_c" + name + "_3x1_3")
Exemple #14
0
    def __init__(self, in_channels, name=None):
        super(Fid_inceptionE_1, self).__init__()
        self.branch1x1 = ConvBNLayer(in_channels,
                                     320,
                                     1,
                                     name=name + '.branch1x1')

        self.branch3x3_1 = ConvBNLayer(in_channels,
                                       384,
                                       1,
                                       name=name + '.branch3x3_1')
        self.branch3x3_2a = ConvBNLayer(384,
                                        384, (1, 3),
                                        padding=(0, 1),
                                        name=name + '.branch3x3_2a')
        self.branch3x3_2b = ConvBNLayer(384,
                                        384, (3, 1),
                                        padding=(1, 0),
                                        name=name + '.branch3x3_2b')

        self.branch3x3dbl_1 = ConvBNLayer(in_channels,
                                          448,
                                          1,
                                          name=name + '.branch3x3dbl_1')
        self.branch3x3dbl_2 = ConvBNLayer(448,
                                          384,
                                          3,
                                          padding=1,
                                          name=name + '.branch3x3dbl_2')
        self.branch3x3dbl_3a = ConvBNLayer(384,
                                           384, (1, 3),
                                           padding=(0, 1),
                                           name=name + '.branch3x3dbl_3a')
        self.branch3x3dbl_3b = ConvBNLayer(384,
                                           384, (3, 1),
                                           padding=(1, 0),
                                           name=name + '.branch3x3dbl_3b')

        self.branch_pool0 = AvgPool2D(pool_size=3,
                                      pool_stride=1,
                                      pool_padding=1,
                                      exclusive=True)
        self.branch_pool = ConvBNLayer(in_channels,
                                       192,
                                       1,
                                       name=name + '.branch_pool')
Exemple #15
0
    def __init__(self,
                 num_channels1,
                 num_channels2,
                 num_filters,
                 stride,
                 scales,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
        self.stride = stride
        self.scales = scales
        self.conv0 = ConvBNLayer(num_channels=num_channels1,
                                 num_filters=num_filters,
                                 filter_size=1,
                                 act='relu',
                                 name=name + "_branch2a")
        self.conv1_list = []
        for s in range(scales - 1):
            conv1 = self.add_sublayer(
                name + '_branch2b_' + str(s + 1),
                ConvBNLayer(num_channels=num_filters // scales,
                            num_filters=num_filters // scales,
                            filter_size=3,
                            stride=stride,
                            act='relu',
                            name=name + '_branch2b_' + str(s + 1)))
            self.conv1_list.append(conv1)
        self.pool2d_avg = AvgPool2D(kernel_size=3, stride=stride, padding=1)

        self.conv2 = ConvBNLayer(num_channels=num_filters,
                                 num_filters=num_channels2,
                                 filter_size=1,
                                 act=None,
                                 name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(num_channels=num_channels1,
                                     num_filters=num_channels2,
                                     filter_size=1,
                                     stride=1,
                                     is_vd_mode=False if if_first else True,
                                     name=name + "_branch1")

        self.shortcut = shortcut
Exemple #16
0
    def __init__(self, num_channels, pool_features):
        super().__init__()
        self.branch1x1 = ConvNormActivation(in_channels=num_channels,
                                            out_channels=64,
                                            kernel_size=1,
                                            padding=0,
                                            activation_layer=nn.ReLU)

        self.branch5x5_1 = ConvNormActivation(in_channels=num_channels,
                                              out_channels=48,
                                              kernel_size=1,
                                              padding=0,
                                              activation_layer=nn.ReLU)
        self.branch5x5_2 = ConvNormActivation(in_channels=48,
                                              out_channels=64,
                                              kernel_size=5,
                                              padding=2,
                                              activation_layer=nn.ReLU)

        self.branch3x3dbl_1 = ConvNormActivation(in_channels=num_channels,
                                                 out_channels=64,
                                                 kernel_size=1,
                                                 padding=0,
                                                 activation_layer=nn.ReLU)
        self.branch3x3dbl_2 = ConvNormActivation(in_channels=64,
                                                 out_channels=96,
                                                 kernel_size=3,
                                                 padding=1,
                                                 activation_layer=nn.ReLU)
        self.branch3x3dbl_3 = ConvNormActivation(in_channels=96,
                                                 out_channels=96,
                                                 kernel_size=3,
                                                 padding=1,
                                                 activation_layer=nn.ReLU)

        self.branch_pool = AvgPool2D(kernel_size=3,
                                     stride=1,
                                     padding=1,
                                     exclusive=False)
        self.branch_pool_conv = ConvNormActivation(in_channels=num_channels,
                                                   out_channels=pool_features,
                                                   kernel_size=1,
                                                   padding=0,
                                                   activation_layer=nn.ReLU)
Exemple #17
0
    def __init__(self, in_channels, pool_features, name=None):
        super(Fid_inceptionA, self).__init__()
        self.branch1x1 = ConvBNLayer(in_channels,
                                     64,
                                     1,
                                     name=name + '.branch1x1')

        self.branch5x5_1 = ConvBNLayer(in_channels,
                                       48,
                                       1,
                                       name=name + '.branch5x5_1')
        self.branch5x5_2 = ConvBNLayer(48,
                                       64,
                                       5,
                                       padding=2,
                                       name=name + '.branch5x5_2')

        self.branch3x3dbl_1 = ConvBNLayer(in_channels,
                                          64,
                                          1,
                                          name=name + '.branch3x3dbl_1')
        self.branch3x3dbl_2 = ConvBNLayer(64,
                                          96,
                                          3,
                                          padding=1,
                                          name=name + '.branch3x3dbl_2')
        self.branch3x3dbl_3 = ConvBNLayer(96,
                                          96,
                                          3,
                                          padding=1,
                                          name=name + '.branch3x3dbl_3')

        self.branch_pool0 = AvgPool2D(pool_size=3,
                                      pool_stride=1,
                                      pool_padding=1,
                                      exclusive=True)
        self.branch_pool = ConvBNLayer(in_channels,
                                       pool_features,
                                       1,
                                       name=name + '.branch_pool')
 def __init__(self,
              in_channels,
              out_channels,
              kernel_size,
              stride=1,
              groups=1,
              is_tweaks_mode=False,
              act=None,
              lr_mult=1.0,
              name=None):
     super(ConvBNLayer, self).__init__()
     self.is_tweaks_mode = is_tweaks_mode
     self._pool2d_avg = AvgPool2D(kernel_size=2,
                                  stride=2,
                                  padding=0,
                                  ceil_mode=True)
     self._conv = Conv2D(in_channels=in_channels,
                         out_channels=out_channels,
                         kernel_size=kernel_size,
                         stride=stride,
                         padding=(kernel_size - 1) // 2,
                         groups=groups,
                         weight_attr=ParamAttr(name=name + "_weights",
                                               learning_rate=lr_mult),
                         bias_attr=False)
     if name == "conv1":
         bn_name = "bn_" + name
     else:
         bn_name = "bn" + name[3:]
     self._batch_norm = BatchNorm(
         out_channels,
         act=act,
         param_attr=ParamAttr(name=bn_name + '_scale',
                              learning_rate=lr_mult,
                              regularizer=L2Decay(0.0)),
         bias_attr=ParamAttr(bn_name + '_offset',
                             learning_rate=lr_mult,
                             regularizer=L2Decay(0.0)),
         moving_mean_name=bn_name + '_mean',
         moving_variance_name=bn_name + '_variance')
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 is_tweaks_mode=False,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.is_tweaks_mode = is_tweaks_mode
        #ResNet-D 1/2:add a 2×2 average pooling layer with a stride of 2 before the convolution,
        #             whose stride is changed to 1, works well in practice.
        self._pool2d_avg = AvgPool2D(kernel_size=2,
                                     stride=2,
                                     padding=0,
                                     ceil_mode=True)

        self._conv = Conv2D(in_channels=in_channels,
                            out_channels=out_channels,
                            kernel_size=kernel_size,
                            stride=stride,
                            padding=(kernel_size - 1) // 2,
                            groups=groups,
                            weight_attr=ParamAttr(name=name + "_weights"),
                            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]

        self._act = act

        self._batch_norm = BatchNorm2D(
            out_channels,
            weight_attr=ParamAttr(name=bn_name + "_scale",
                                  regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(bn_name + "_offset", regularizer=L2Decay(0.0)))
Exemple #20
0
    def __init__(self, num_channels, pool_features):
        super().__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=64,
                                     filter_size=1,
                                     act="relu")
        self.branch5x5_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=48,
                                       filter_size=1,
                                       act="relu")
        self.branch5x5_2 = ConvBNLayer(num_channels=48,
                                       num_filters=64,
                                       filter_size=5,
                                       padding=2,
                                       act="relu")

        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
                                          num_filters=64,
                                          filter_size=1,
                                          act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=64,
                                          num_filters=96,
                                          filter_size=3,
                                          padding=1,
                                          act="relu")
        self.branch3x3dbl_3 = ConvBNLayer(num_channels=96,
                                          num_filters=96,
                                          filter_size=3,
                                          padding=1,
                                          act="relu")
        self.branch_pool = AvgPool2D(kernel_size=3,
                                     stride=1,
                                     padding=1,
                                     exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                                            num_filters=pool_features,
                                            filter_size=1,
                                            act="relu")
 def __init__(self, name):
     super(InceptionA, self).__init__()
     self._pool = AvgPool2D(kernel_size=3, stride=1, padding=1)
     self._conv1 = ConvBNLayer(
         384, 96, 1, act="relu", name="inception_a" + name + "_1x1")
     self._conv2 = ConvBNLayer(
         384, 96, 1, act="relu", name="inception_a" + name + "_1x1_2")
     self._conv3_1 = ConvBNLayer(
         384, 64, 1, act="relu", name="inception_a" + name + "_3x3_reduce")
     self._conv3_2 = ConvBNLayer(
         64,
         96,
         3,
         padding=1,
         act="relu",
         name="inception_a" + name + "_3x3")
     self._conv4_1 = ConvBNLayer(
         384,
         64,
         1,
         act="relu",
         name="inception_a" + name + "_3x3_2_reduce")
     self._conv4_2 = ConvBNLayer(
         64,
         96,
         3,
         padding=1,
         act="relu",
         name="inception_a" + name + "_3x3_2")
     self._conv4_3 = ConvBNLayer(
         96,
         96,
         3,
         padding=1,
         act="relu",
         name="inception_a" + name + "_3x3_3")
Exemple #22
0
    def __init__(self, num_channels, ch1x1, ch3x3reduced, ch3x3, doublech3x3reduced, doublech3x3_1, doublech3x3_2, pool_proj):
        '''
        @Brief
            传入参数用于定义 `Inception` 结构
 
        @Parameters
            num_channels : 传入图片通道数
            ch1x1        : 1x1卷积操作的输出通道数
            ch3x3reduced : 3x3卷积之前的1x1卷积的通道数
            ch3x3        : 3x3卷积操作的输出通道数
            doublech3x3reduced : 两个3x3卷积叠加之前的1x1卷积的通道数
            doublech3x3_1        : 第一个3x3卷积操作的输出通道数
            doublech3x3_2        : 第而个3x3卷积操作的输出通道数
            pool_proj    : 池化操作之后1x1卷积的通道数

        @Return
            返回 `Inception` 网络模型

        @Examples
        ------------
        '''

        super(Inception, self).__init__()

        self.branch1 = ConvBNLayer(num_channels=num_channels,
                                    num_filters=ch1x1,
                                    filter_size=1,
                                    stride=1,
                                    padding=0)

        self.branch2 = paddle.nn.Sequential(
                        ConvBNLayer(num_channels=num_channels,
                                    num_filters=ch3x3reduced,
                                    filter_size=1,
                                    stride=1,
                                    padding=0),
                        ConvBNLayer(num_channels=ch3x3reduced,
                                    num_filters=ch3x3,
                                    filter_size=3,
                                    stride=1,
                                    padding=1)
                        )

        self.branch3 = paddle.nn.Sequential(
                        ConvBNLayer(num_channels=num_channels,
                                    num_filters=doublech3x3reduced,
                                    filter_size=1,
                                    stride=1,
                                    padding=0),
                        ConvBNLayer(num_channels=doublech3x3reduced,
                                    num_filters=doublech3x3_1,
                                    filter_size=3,
                                    stride=1,
                                    padding=1),
                        ConvBNLayer(num_channels=doublech3x3_1,
                                    num_filters=doublech3x3_2,
                                    filter_size=3,
                                    stride=1,
                                    padding=1)
                        )

        self.branch4 = paddle.nn.Sequential(
                        AvgPool2D(kernel_size=3,
                                    stride=1,
                                    padding=1),
                        ConvBNLayer(num_channels=num_channels,
                                    num_filters=pool_proj,
                                    filter_size=1,
                                    stride=1,
                                    padding=0)
                        )
Exemple #23
0
    def __init__(self, class_num=1000):
        super(GoogLeNetDY, self).__init__()
        self._conv = ConvLayer(3, 64, 7, 2, name="conv1")
        self._pool = MaxPool2D(kernel_size=3, stride=2)
        self._conv_1 = ConvLayer(64, 64, 1, name="conv2_1x1")
        self._conv_2 = ConvLayer(64, 192, 3, name="conv2_3x3")

        self._ince3a = Inception(192,
                                 192,
                                 64,
                                 96,
                                 128,
                                 16,
                                 32,
                                 32,
                                 name="ince3a")
        self._ince3b = Inception(256,
                                 256,
                                 128,
                                 128,
                                 192,
                                 32,
                                 96,
                                 64,
                                 name="ince3b")

        self._ince4a = Inception(480,
                                 480,
                                 192,
                                 96,
                                 208,
                                 16,
                                 48,
                                 64,
                                 name="ince4a")
        self._ince4b = Inception(512,
                                 512,
                                 160,
                                 112,
                                 224,
                                 24,
                                 64,
                                 64,
                                 name="ince4b")
        self._ince4c = Inception(512,
                                 512,
                                 128,
                                 128,
                                 256,
                                 24,
                                 64,
                                 64,
                                 name="ince4c")
        self._ince4d = Inception(512,
                                 512,
                                 112,
                                 144,
                                 288,
                                 32,
                                 64,
                                 64,
                                 name="ince4d")
        self._ince4e = Inception(528,
                                 528,
                                 256,
                                 160,
                                 320,
                                 32,
                                 128,
                                 128,
                                 name="ince4e")

        self._ince5a = Inception(832,
                                 832,
                                 256,
                                 160,
                                 320,
                                 32,
                                 128,
                                 128,
                                 name="ince5a")
        self._ince5b = Inception(832,
                                 832,
                                 384,
                                 192,
                                 384,
                                 48,
                                 128,
                                 128,
                                 name="ince5b")

        self._pool_5 = AdaptiveAvgPool2D(1)

        self._drop = Dropout(p=0.4, mode="downscale_in_infer")
        self._fc_out = Linear(1024,
                              class_num,
                              weight_attr=xavier(1024, 1, "out"),
                              bias_attr=ParamAttr(name="out_offset"))
        self._pool_o1 = AvgPool2D(kernel_size=5, stride=3)
        self._conv_o1 = ConvLayer(512, 128, 1, name="conv_o1")
        self._fc_o1 = Linear(1152,
                             1024,
                             weight_attr=xavier(2048, 1, "fc_o1"),
                             bias_attr=ParamAttr(name="fc_o1_offset"))
        self._drop_o1 = Dropout(p=0.7, mode="downscale_in_infer")
        self._out1 = Linear(1024,
                            class_num,
                            weight_attr=xavier(1024, 1, "out1"),
                            bias_attr=ParamAttr(name="out1_offset"))
        self._pool_o2 = AvgPool2D(kernel_size=5, stride=3)
        self._conv_o2 = ConvLayer(528, 128, 1, name="conv_o2")
        self._fc_o2 = Linear(1152,
                             1024,
                             weight_attr=xavier(2048, 1, "fc_o2"),
                             bias_attr=ParamAttr(name="fc_o2_offset"))
        self._drop_o2 = Dropout(p=0.7, mode="downscale_in_infer")
        self._out2 = Linear(1024,
                            class_num,
                            weight_attr=xavier(1024, 1, "out2"),
                            bias_attr=ParamAttr(name="out2_offset"))
Exemple #24
0
    def __init__(self, num_channels, channels_7x7):
        super().__init__()
        self.branch1x1 = ConvNormActivation(in_channels=num_channels,
                                            out_channels=192,
                                            kernel_size=1,
                                            padding=0,
                                            activation_layer=nn.ReLU)

        self.branch7x7_1 = ConvNormActivation(in_channels=num_channels,
                                              out_channels=channels_7x7,
                                              kernel_size=1,
                                              stride=1,
                                              padding=0,
                                              activation_layer=nn.ReLU)
        self.branch7x7_2 = ConvNormActivation(in_channels=channels_7x7,
                                              out_channels=channels_7x7,
                                              kernel_size=(1, 7),
                                              stride=1,
                                              padding=(0, 3),
                                              activation_layer=nn.ReLU)
        self.branch7x7_3 = ConvNormActivation(in_channels=channels_7x7,
                                              out_channels=192,
                                              kernel_size=(7, 1),
                                              stride=1,
                                              padding=(3, 0),
                                              activation_layer=nn.ReLU)

        self.branch7x7dbl_1 = ConvNormActivation(in_channels=num_channels,
                                                 out_channels=channels_7x7,
                                                 kernel_size=1,
                                                 padding=0,
                                                 activation_layer=nn.ReLU)
        self.branch7x7dbl_2 = ConvNormActivation(in_channels=channels_7x7,
                                                 out_channels=channels_7x7,
                                                 kernel_size=(7, 1),
                                                 padding=(3, 0),
                                                 activation_layer=nn.ReLU)
        self.branch7x7dbl_3 = ConvNormActivation(in_channels=channels_7x7,
                                                 out_channels=channels_7x7,
                                                 kernel_size=(1, 7),
                                                 padding=(0, 3),
                                                 activation_layer=nn.ReLU)
        self.branch7x7dbl_4 = ConvNormActivation(in_channels=channels_7x7,
                                                 out_channels=channels_7x7,
                                                 kernel_size=(7, 1),
                                                 padding=(3, 0),
                                                 activation_layer=nn.ReLU)
        self.branch7x7dbl_5 = ConvNormActivation(in_channels=channels_7x7,
                                                 out_channels=192,
                                                 kernel_size=(1, 7),
                                                 padding=(0, 3),
                                                 activation_layer=nn.ReLU)

        self.branch_pool = AvgPool2D(kernel_size=3,
                                     stride=1,
                                     padding=1,
                                     exclusive=False)
        self.branch_pool_conv = ConvNormActivation(in_channels=num_channels,
                                                   out_channels=192,
                                                   kernel_size=1,
                                                   padding=0,
                                                   activation_layer=nn.ReLU)
    def __init__(self, num_channels, name=None):
        super(InceptionE, self).__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=320,
                                     filter_size=1,
                                     act="relu",
                                     name="inception_e_branch1x1_" + name)
        self.branch3x3_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=384,
                                       filter_size=1,
                                       act="relu",
                                       name="inception_e_branch3x3_1_" + name)
        self.branch3x3_2a = ConvBNLayer(num_channels=384,
                                        num_filters=384,
                                        filter_size=(1, 3),
                                        padding=(0, 1),
                                        act="relu",
                                        name="inception_e_branch3x3_2a_" +
                                        name)
        self.branch3x3_2b = ConvBNLayer(num_channels=384,
                                        num_filters=384,
                                        filter_size=(3, 1),
                                        padding=(1, 0),
                                        act="relu",
                                        name="inception_e_branch3x3_2b_" +
                                        name)

        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
                                          num_filters=448,
                                          filter_size=1,
                                          act="relu",
                                          name="inception_e_branch3x3dbl_1_" +
                                          name)
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=448,
                                          num_filters=384,
                                          filter_size=3,
                                          padding=1,
                                          act="relu",
                                          name="inception_e_branch3x3dbl_2_" +
                                          name)
        self.branch3x3dbl_3a = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(1, 3),
            padding=(0, 1),
            act="relu",
            name="inception_e_branch3x3dbl_3a_" + name)
        self.branch3x3dbl_3b = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(3, 1),
            padding=(1, 0),
            act="relu",
            name="inception_e_branch3x3dbl_3b_" + name)
        self.branch_pool = AvgPool2D(kernel_size=3,
                                     stride=1,
                                     padding=1,
                                     exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                                            num_filters=192,
                                            filter_size=1,
                                            act="relu",
                                            name="inception_e_branch_pool_" +
                                            name)
    def __init__(self, num_channels, channels_7x7, name=None):
        super(InceptionC, self).__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=192,
                                     filter_size=1,
                                     act="relu",
                                     name="inception_c_branch1x1_" + name)
        self.branch7x7_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=channels_7x7,
                                       filter_size=1,
                                       stride=1,
                                       act="relu",
                                       name="inception_c_branch7x7_1_" + name)
        self.branch7x7_2 = ConvBNLayer(num_channels=channels_7x7,
                                       num_filters=channels_7x7,
                                       filter_size=(1, 7),
                                       stride=1,
                                       padding=(0, 3),
                                       act="relu",
                                       name="inception_c_branch7x7_2_" + name)
        self.branch7x7_3 = ConvBNLayer(num_channels=channels_7x7,
                                       num_filters=192,
                                       filter_size=(7, 1),
                                       stride=1,
                                       padding=(3, 0),
                                       act="relu",
                                       name="inception_c_branch7x7_3_" + name)

        self.branch7x7dbl_1 = ConvBNLayer(num_channels=num_channels,
                                          num_filters=channels_7x7,
                                          filter_size=1,
                                          act="relu",
                                          name="inception_c_branch7x7dbl_1_" +
                                          name)
        self.branch7x7dbl_2 = ConvBNLayer(num_channels=channels_7x7,
                                          num_filters=channels_7x7,
                                          filter_size=(7, 1),
                                          padding=(3, 0),
                                          act="relu",
                                          name="inception_c_branch7x7dbl_2_" +
                                          name)
        self.branch7x7dbl_3 = ConvBNLayer(num_channels=channels_7x7,
                                          num_filters=channels_7x7,
                                          filter_size=(1, 7),
                                          padding=(0, 3),
                                          act="relu",
                                          name="inception_c_branch7x7dbl_3_" +
                                          name)
        self.branch7x7dbl_4 = ConvBNLayer(num_channels=channels_7x7,
                                          num_filters=channels_7x7,
                                          filter_size=(7, 1),
                                          padding=(3, 0),
                                          act="relu",
                                          name="inception_c_branch7x7dbl_4_" +
                                          name)
        self.branch7x7dbl_5 = ConvBNLayer(num_channels=channels_7x7,
                                          num_filters=192,
                                          filter_size=(1, 7),
                                          padding=(0, 3),
                                          act="relu",
                                          name="inception_c_branch7x7dbl_5_" +
                                          name)

        self.branch_pool = AvgPool2D(kernel_size=3,
                                     stride=1,
                                     padding=1,
                                     exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                                            num_filters=192,
                                            filter_size=1,
                                            act="relu",
                                            name="inception_c_branch_pool_" +
                                            name)
Exemple #27
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 radix=1,
                 cardinality=1,
                 bottleneck_width=64,
                 avd=False,
                 avd_first=False,
                 dilation=1,
                 is_first=False,
                 rectify_avg=False,
                 last_gamma=False,
                 avg_down=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.radix = radix
        self.cardinality = cardinality
        self.avd = avd
        self.avd_first = avd_first
        self.dilation = dilation
        self.is_first = is_first
        self.rectify_avg = rectify_avg
        self.last_gamma = last_gamma
        self.avg_down = avg_down

        group_width = int(planes * (bottleneck_width / 64.)) * cardinality

        self.conv1 = ConvBNLayer(num_channels=self.inplanes,
                                 num_filters=group_width,
                                 filter_size=1,
                                 stride=1,
                                 groups=1,
                                 act="relu",
                                 name=name + "_conv1")

        if avd and avd_first and (stride > 1 or is_first):
            self.avg_pool2d_1 = AvgPool2D(kernel_size=3,
                                          stride=stride,
                                          padding=1)

        if radix >= 1:
            self.conv2 = SplatConv(in_channels=group_width,
                                   channels=group_width,
                                   kernel_size=3,
                                   stride=1,
                                   padding=dilation,
                                   dilation=dilation,
                                   groups=cardinality,
                                   bias=False,
                                   radix=radix,
                                   rectify_avg=rectify_avg,
                                   name=name + "_splat")
        else:
            self.conv2 = ConvBNLayer(num_channels=group_width,
                                     num_filters=group_width,
                                     filter_size=3,
                                     stride=1,
                                     dilation=dilation,
                                     groups=cardinality,
                                     act="relu",
                                     name=name + "_conv2")

        if avd and avd_first == False and (stride > 1 or is_first):
            self.avg_pool2d_2 = AvgPool2D(kernel_size=3,
                                          stride=stride,
                                          padding=1)

        self.conv3 = ConvBNLayer(num_channels=group_width,
                                 num_filters=planes * 4,
                                 filter_size=1,
                                 stride=1,
                                 groups=1,
                                 act=None,
                                 name=name + "_conv3")

        if stride != 1 or self.inplanes != self.planes * 4:
            if avg_down:
                if dilation == 1:
                    self.avg_pool2d_3 = AvgPool2D(kernel_size=stride,
                                                  stride=stride,
                                                  padding=0)
                else:
                    self.avg_pool2d_3 = AvgPool2D(kernel_size=1,
                                                  stride=1,
                                                  padding=0,
                                                  ceil_mode=True)

                self.conv4 = Conv2D(in_channels=self.inplanes,
                                    out_channels=planes * 4,
                                    kernel_size=1,
                                    stride=1,
                                    padding=0,
                                    groups=1,
                                    weight_attr=ParamAttr(
                                        name=name + "_weights",
                                        initializer=KaimingNormal()),
                                    bias_attr=False)
            else:
                self.conv4 = Conv2D(in_channels=self.inplanes,
                                    out_channels=planes * 4,
                                    kernel_size=1,
                                    stride=stride,
                                    padding=0,
                                    groups=1,
                                    weight_attr=ParamAttr(
                                        name=name + "_shortcut_weights",
                                        initializer=KaimingNormal()),
                                    bias_attr=False)

            bn_decay = 0.0
            self._batch_norm = BatchNorm(
                planes * 4,
                act=None,
                param_attr=ParamAttr(name=name + "_shortcut_scale",
                                     regularizer=L2Decay(bn_decay)),
                bias_attr=ParamAttr(name + "_shortcut_offset",
                                    regularizer=L2Decay(bn_decay)),
                moving_mean_name=name + "_shortcut_mean",
                moving_variance_name=name + "_shortcut_variance")
Exemple #28
0
    def __init__(self, layers=50, num_classes=1000):
        super(ResNet, self).__init__()
        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34:
            depth = [3, 4, 6, 3]
        elif layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]

        if layers < 50:
            num_channels = [64, 64, 128, 256]
        else:
            num_channels = [64, 256, 512, 1024]

        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(num_channels=3,
                                num_filters=64,
                                filter_size=7,
                                stride=2,
                                act='relu')
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
        if layers < 50:
            block = BasicBlock
            l1_shortcut = True
        else:
            block = BottleneckBlock
            l1_shortcut = False

        self.layer1 = Sequential(*self.make_layer(block,
                                                  num_channels[0],
                                                  num_filters[0],
                                                  depth[0],
                                                  stride=1,
                                                  shortcut=l1_shortcut,
                                                  name='layer1'))
        self.layer2 = Sequential(*self.make_layer(block,
                                                  num_channels[1],
                                                  num_filters[1],
                                                  depth[1],
                                                  stride=2,
                                                  name='layer2'))
        self.layer3 = Sequential(*self.make_layer(block,
                                                  num_channels[2],
                                                  num_filters[2],
                                                  depth[2],
                                                  stride=1,
                                                  name='layer3',
                                                  dilation=2))
        self.layer4 = Sequential(*self.make_layer(block,
                                                  num_channels[3],
                                                  num_filters[3],
                                                  depth[3],
                                                  stride=1,
                                                  name='layer4',
                                                  dilation=4))
        self.last_pool = AvgPool2D(
            kernel_size=7  # ignore if global_pooling is True
        )
        self.fc = Linear(in_features=num_filters[-1] * block.expansion,
                         out_features=num_classes)

        self.out_dim = num_filters[-1] * block.expansion
Exemple #29
0
    def __init__(self, num_channels, ch1x1, ch3x3reduced, ch3x3,
                 doublech3x3reduced, doublech3x3_1, doublech3x3_2, pool_proj):
        '''
        @Brief
             `Inception` 
 
        @Parameters
            num_channels : channel numbers of input tensor
            ch1x1        : output channel numbers of 1x1 conv
            ch3x3reduced : channel numbers of 1x1 conv before 3x3 conv
            ch3x3        : output channel numbers of 3x3 conv
            doublech3x3reduced : channel numbers of 1x1 conv before the double 3x3 convs
            doublech3x3_1        : output channel numbers of the first 3x3 conv
            doublech3x3_2        : output channel numbers of the second 3x3 conv
            pool_proj    : output channel numbers of 1x1 conv after pool

        @Return
             `Inception` model

        '''

        super(Inception, self).__init__()

        self.branch1 = ConvBNLayer(num_channels=num_channels,
                                   num_filters=ch1x1,
                                   filter_size=1,
                                   stride=1,
                                   padding=0)

        self.branch2 = paddle.nn.Sequential(
            ConvBNLayer(num_channels=num_channels,
                        num_filters=ch3x3reduced,
                        filter_size=1,
                        stride=1,
                        padding=0),
            ConvBNLayer(num_channels=ch3x3reduced,
                        num_filters=ch3x3,
                        filter_size=3,
                        stride=1,
                        padding=1))

        self.branch3 = paddle.nn.Sequential(
            ConvBNLayer(num_channels=num_channels,
                        num_filters=doublech3x3reduced,
                        filter_size=1,
                        stride=1,
                        padding=0),
            ConvBNLayer(num_channels=doublech3x3reduced,
                        num_filters=doublech3x3_1,
                        filter_size=3,
                        stride=1,
                        padding=1),
            ConvBNLayer(num_channels=doublech3x3_1,
                        num_filters=doublech3x3_2,
                        filter_size=3,
                        stride=1,
                        padding=1))

        self.branch4 = paddle.nn.Sequential(
            AvgPool2D(kernel_size=3, stride=1, padding=1),
            ConvBNLayer(num_channels=num_channels,
                        num_filters=pool_proj,
                        filter_size=1,
                        stride=1,
                        padding=0))
Exemple #30
0
    def __init__(self, config):
        super(TSN_ResNet, self).__init__()
        self.layers = config.MODEL.num_layers
        self.seg_num = config.MODEL.seg_num
        self.class_dim = config.MODEL.num_classes
        supported_layers = [18, 34, 50, 101, 152]
        assert self.layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if self.layers == 18:
            depth = [2, 2, 2, 2]
        elif self.layers == 34 or self.layers == 50:
            depth = [3, 4, 6, 3]
        elif self.layers == 101:
            depth = [3, 4, 23, 3]
        elif self.layers == 152:
            depth = [3, 8, 36, 3]
        in_channels = [64, 256, 512, 1024
                       ] if self.layers >= 50 else [64, 64, 128, 256]
        out_channels = [64, 128, 256, 512]

        self.conv = ConvBNLayer(in_channels=3,
                                out_channels=64,
                                kernel_size=7,
                                stride=2,
                                act="relu",
                                name="conv1")
        self.pool2D_max = MaxPool2D(kernel_size=3, stride=2, padding=1)

        self.block_list = []
        if self.layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if self.layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        conv_name,
                        BottleneckBlock(
                            in_channels=in_channels[block]
                            if i == 0 else out_channels[block] * 4,
                            out_channels=out_channels[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    basic_block = self.add_sublayer(
                        conv_name,
                        BasicBlock(in_channels=in_channels[block]
                                   if i == 0 else out_channels[block],
                                   out_channels=out_channels[block],
                                   stride=2 if i == 0 and block != 0 else 1,
                                   shortcut=shortcut,
                                   name=conv_name))
                    self.block_list.append(basic_block)
                    shortcut = True

        self.pool2D_avg = AvgPool2D(kernel_size=7)

        self.pool2D_avg_channels = in_channels[-1] * 2

        self.out = Linear(
            self.pool2D_avg_channels,
            self.class_dim,
            weight_attr=ParamAttr(initializer=paddle.nn.initializer.Normal(
                mean=0.0, std=0.01),
                                  name="fc_0.w_0"),
            bias_attr=ParamAttr(
                initializer=paddle.nn.initializer.Constant(value=0.0),
                name="fc_0.b_0"))