Exemple #1
0
    def _attention(self, direct, cur_token, prev, to_apply, to_apply_proj):
        with layer.mixed(size=cur_token.size,
                         bias_attr=Attr.Param(direct + '.bp',
                             initial_std=0.),
                         act=Act.Linear()) as proj:
            proj += layer.full_matrix_projection(
                    input=cur_token,
                    param_attr=Attr.Param(direct + '.wp'))
            proj += layer.full_matrix_projection(
                    input=prev,
                    param_attr=Attr.Param(direct + '.wr'))

        expanded = layer.expand(input=proj, expand_as=to_apply)
        att_context = layer.addto(input=[expanded, to_apply_proj],
                                  act=Act.Tanh(),
                                  bias_attr=False)

        att_weights = layer.fc(input=att_context,
                               param_attr=Attr.Param(direct + '.w'),
                               bias_attr=Attr.Param(direct + '.b',
                                   initial_std=0.),
                               act=Act.SequenceSoftmax(),
                               size=1)
        scaled = layer.scaling(input=to_apply, weight=att_weights)
        applied = layer.pooling(input=scaled,
                                pooling_type=paddle.pooling.Sum())
        return applied
Exemple #2
0
    def _attention(self, direct, cur_token, prev, to_apply, to_apply_proj):
        with layer.mixed(size=cur_token.size,
                         bias_attr=Attr.Param(direct + '.bp', initial_std=0.),
                         act=Act.Linear()) as proj:
            proj += layer.full_matrix_projection(input=cur_token,
                                                 param_attr=Attr.Param(direct +
                                                                       '.wp'))
            proj += layer.full_matrix_projection(input=prev,
                                                 param_attr=Attr.Param(direct +
                                                                       '.wr'))

        expanded = layer.expand(input=proj, expand_as=to_apply)
        att_context = layer.addto(input=[expanded, to_apply_proj],
                                  act=Act.Tanh(),
                                  bias_attr=False)

        att_weights = layer.fc(input=att_context,
                               param_attr=Attr.Param(direct + '.w'),
                               bias_attr=Attr.Param(direct + '.b',
                                                    initial_std=0.),
                               act=Act.SequenceSoftmax(),
                               size=1)
        scaled = layer.scaling(input=to_apply, weight=att_weights)
        applied = layer.pooling(input=scaled,
                                pooling_type=paddle.pooling.Sum())
        return applied
Exemple #3
0
 def _step_basic(self, h_cur, u):
     expanded_h = layer.expand(input=h_cur, expand_as=u)
     hu = layer.concat(input=[expanded_h, u])
     with layer.mixed(bias_attr=False) as dot_hu:
         dot_hu += layer.dotmul_operator(a=expanded_h, b=u)
     cat_all = layer.concat(input=[hu, dot_hu])
     s = layer.fc(size=1,
                  bias_attr=False,
                  param_attr=Attr.Param(self.name + '.ws'),
                  input=cat_all)
     return s
Exemple #4
0
 def test_reshape_layer(self):
     block_expand = layer.block_expand(
         input=conv, num_channels=4, stride_x=1, block_x=1)
     expand = layer.expand(
         input=weight,
         expand_as=pixel,
         expand_level=layer.ExpandLevel.FROM_TIMESTEP)
     repeat = layer.repeat(input=pixel, num_repeats=4)
     reshape = layer.seq_reshape(input=pixel, reshape_size=4)
     rotate = layer.rotate(input=pixel, height=16, width=49)
     print layer.parse_network(block_expand, expand, repeat, reshape, rotate)
Exemple #5
0
 def test_reshape_layer(self):
     block_expand = layer.block_expand(
         input=conv, num_channels=4, stride_x=1, block_x=1)
     expand = layer.expand(
         input=weight,
         expand_as=pixel,
         expand_level=layer.ExpandLevel.FROM_NO_SEQUENCE)
     repeat = layer.repeat(input=pixel, num_repeats=4)
     reshape = layer.seq_reshape(input=pixel, reshape_size=4)
     rotate = layer.rotate(input=pixel, height=16, width=49)
     print layer.parse_network(
         [block_expand, expand, repeat, reshape, rotate])
Exemple #6
0
 def _attention_flow(self, h, u):
     bs = layer.recurrent_group(input=[h, layer.StaticInput(u)],
                                step=self._h_step,
                                reverse=False)
     b_weights = layer.mixed(act=Act.SequenceSoftmax(),
                             bias_attr=False,
                             input=layer.identity_projection(bs))
     h_step_scaled = layer.scaling(input=h, weight=b_weights)
     h_step = layer.pooling(input=h_step_scaled,
                            pooling_type=paddle.pooling.Sum())
     h_expr = layer.expand(input=h_step, expand_as=h)
     u_expr = layer.recurrent_group(input=[h, layer.StaticInput(u)],
                                    step=self._u_step,
                                    reverse=False)
     g = self._beta(h, u_expr, h_expr)
     return g