Exemple #1
0
    def create_dataset(self, dataset_name, context):
        name = "dataset." + dataset_name + "."
        type_name = envs.get_global_env(name + "type")
        if envs.get_platform() != "LINUX":
            print("platform ", envs.get_platform(), "Reader To Dataloader")
            type_name = "DataLoader"

        if type_name == "DataLoader":
            return None
        else:
            return self._get_dataset(dataset_name, context)
Exemple #2
0
    def _create_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        type_name = envs.get_global_env(name + "type")
        if envs.get_platform() != "LINUX":
            print("platform ", envs.get_platform(),
                  " change reader to DataLoader")
            type_name = "DataLoader"
        padding = 0

        if type_name == "DataLoader":
            return None
        else:
            return self._get_dataset(dataset_name)
Exemple #3
0
def single_infer_engine(args):
    trainer = get_trainer_prefix(args) + "SingleInfer"
    single_envs = {}
    single_envs["train.trainer.trainer"] = trainer
    single_envs["train.trainer.threads"] = "2"
    single_envs["train.trainer.engine"] = "single_infer"
    single_envs["train.trainer.platform"] = envs.get_platform()
    print("use {} engine to run model: {}".format(trainer, args.model))
    set_runtime_envs(single_envs, args.model)
    trainer = TrainerFactory.create(args.model)
    return trainer
    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
        self.regist_context_processor('startup_pass', self.startup)
        if envs.get_platform() == "LINUX" and envs.get_global_env(
                "dataset_class", None, "train.reader") != "DataLoader":
            self.regist_context_processor('train_pass', self.dataset_train)
        else:
            self.regist_context_processor('train_pass', self.dataloader_train)

        self.regist_context_processor('infer_pass', self.infer)
        self.regist_context_processor('terminal_pass', self.terminal)
Exemple #5
0
def online_learning(args):
    trainer = "OnlineLearningTrainer"
    single_envs = {}
    single_envs["train.trainer.trainer"] = trainer
    single_envs["train.trainer.threads"] = "2"
    single_envs["train.trainer.engine"] = "online_learning"
    single_envs["train.trainer.platform"] = envs.get_platform()
    print("use {} engine to run model: {}".format(trainer, args.model))

    set_runtime_envs(single_envs, args.model)
    trainer = TrainerFactory.create(args.model)
    return trainer
Exemple #6
0
def cluster_mpi_engine(args):
    print("launch cluster engine with cluster to run model: {}".format(
        args.model))

    cluster_envs = {}
    cluster_envs["train.trainer.trainer"] = "CtrCodingTrainer"
    cluster_envs["train.trainer.platform"] = envs.get_platform()

    set_runtime_envs(cluster_envs, args.model)

    trainer = TrainerFactory.create(args.model)
    return trainer
Exemple #7
0
 def __init__(self, config):
     """R
     """
     self._cost = None
     self._metrics = {}
     self._data_var = []
     self._infer_data_var = []
     self._infer_results = {}
     self._data_loader = None
     self._infer_data_loader = None
     self._fetch_interval = 20
     self._namespace = "train.model"
     self._platform = envs.get_platform()
Exemple #8
0
def local_cluster_engine(args):
    from paddlerec.core.engine.local_cluster import LocalClusterEngine

    _envs = envs.load_yaml(args.model)
    run_extras = get_all_inters_from_yaml(args.model, ["train.", "runner."])
    trainer_class = run_extras.get("runner." + _envs["mode"] + ".runner_class",
                                   None)

    if trainer_class:
        trainer = trainer_class
    else:
        trainer = "GeneralTrainer"

    executor_mode = "train"
    distributed_strategy = run_extras.get(
        "runner." + _envs["mode"] + ".distribute_strategy", "async")

    worker_num = run_extras.get("runner." + _envs["mode"] + ".worker_num", 1)
    server_num = run_extras.get("runner." + _envs["mode"] + ".server_num", 1)
    selected_gpus = run_extras.get(
        "runner." + _envs["mode"] + ".selected_gpus", "0")

    fleet_mode = run_extras.get("runner." + _envs["mode"] + ".fleet_mode", "")
    if fleet_mode == "":
        device = run_extras.get("runner." + _envs["mode"] + ".device", "cpu")
        if len(selected_gpus.split(",")) > 1 and device.upper() == "GPU":
            fleet_mode = "COLLECTIVE"
        else:
            fleet_mode = "PS"

    cluster_envs = {}
    cluster_envs["server_num"] = server_num
    cluster_envs["worker_num"] = worker_num
    cluster_envs["selected_gpus"] = selected_gpus
    cluster_envs["start_port"] = envs.find_free_port()
    cluster_envs["fleet_mode"] = fleet_mode
    cluster_envs["log_dir"] = "logs"
    cluster_envs["train.trainer.trainer"] = trainer
    cluster_envs["train.trainer.executor_mode"] = executor_mode
    cluster_envs["train.trainer.strategy"] = distributed_strategy
    cluster_envs["train.trainer.threads"] = "2"
    cluster_envs["train.trainer.engine"] = "local_cluster"
    cluster_envs["train.trainer.platform"] = envs.get_platform()

    cluster_envs["CPU_NUM"] = "2"
    print("launch {} engine with cluster to run model: {}".format(
        trainer, args.model))

    set_runtime_envs(cluster_envs, args.model)
    launch = LocalClusterEngine(cluster_envs, args.model)
    return launch
Exemple #9
0
    def worker(mode):
        if not mode:
            raise ValueError("mode: {} can not be recognized")

        run_extras = get_all_inters_from_yaml(args.model, ["runner."])

        trainer_class = ".".join(["runner", mode, "trainer_class"])
        fleet_class = ".".join(["runner", mode, "fleet_mode"])
        device_class = ".".join(["runner", mode, "device"])
        selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])
        strategy_class = ".".join(["runner", mode, "distribute_strategy"])
        worker_class = ".".join(["runner", mode, "worker_num"])
        server_class = ".".join(["runner", mode, "server_num"])

        trainer = run_extras.get(trainer_class, "GeneralTrainer")
        fleet_mode = run_extras.get(fleet_class, "ps")
        device = run_extras.get(device_class, "cpu")
        selected_gpus = run_extras.get(selected_gpus_class, "0")
        distributed_strategy = run_extras.get(strategy_class, "async")
        worker_num = run_extras.get(worker_class, 1)
        server_num = run_extras.get(server_class, 1)
        executor_mode = "train"

        device = device.upper()
        fleet_mode = fleet_mode.upper()

        if fleet_mode == "COLLECTIVE" and device != "GPU":
            raise ValueError("COLLECTIVE can not be used with GPU")

        cluster_envs = {}

        if device == "GPU":
            cluster_envs["selected_gpus"] = selected_gpus

        cluster_envs["server_num"] = server_num
        cluster_envs["worker_num"] = worker_num
        cluster_envs["fleet_mode"] = fleet_mode
        cluster_envs["train.trainer.trainer"] = trainer
        cluster_envs["train.trainer.engine"] = "cluster"
        cluster_envs["train.trainer.executor_mode"] = executor_mode
        cluster_envs["train.trainer.strategy"] = distributed_strategy
        cluster_envs["train.trainer.threads"] = envs.get_runtime_environ(
            "CPU_NUM")
        cluster_envs["train.trainer.platform"] = envs.get_platform()
        print("launch {} engine with cluster to with model: {}".format(
            trainer, args.model))
        set_runtime_envs(cluster_envs, args.model)

        trainer = TrainerFactory.create(args.model)
        return trainer
Exemple #10
0
 def __init__(self, config):
     """R
     """
     self._cost = None
     self._metrics = {}
     self._data_var = []
     self._infer_data_var = []
     self._infer_results = {}
     self._data_loader = None
     self._infer_data_loader = None
     self._fetch_interval = 20
     self._platform = envs.get_platform()
     self._init_hyper_parameters()
     self._env = config
     self._slot_inited = False
Exemple #11
0
    def worker():
        role = "WORKER"
        trainer = get_trainer_prefix(args) + "ClusterTrainer"
        cluster_envs = {}
        cluster_envs["train.trainer.trainer"] = trainer
        cluster_envs["train.trainer.engine"] = "cluster"
        cluster_envs["train.trainer.threads"] = envs.get_runtime_environ(
            "CPU_NUM")
        cluster_envs["train.trainer.platform"] = envs.get_platform()
        print("launch {} engine with cluster to with model: {}".format(
            trainer, args.model))
        set_runtime_envs(cluster_envs, args.model)

        trainer = TrainerFactory.create(args.model)
        return trainer
Exemple #12
0
def single_infer_engine(args):
    run_extras = get_all_inters_from_yaml(args.model, ["runner."])

    mode = envs.get_runtime_environ("mode")
    trainer_class = ".".join(["runner", mode, "trainer_class"])
    fleet_class = ".".join(["runner", mode, "fleet_mode"])
    device_class = ".".join(["runner", mode, "device"])
    selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])

    epochs_class = ".".join(["runner", mode, "epochs"])
    epochs = run_extras.get(epochs_class, 1)
    if epochs > 1:
        warnings.warn(
            "It makes no sense to predict the same model for multiple epochs",
            category=UserWarning,
            stacklevel=2)

    trainer = run_extras.get(trainer_class, "GeneralTrainer")
    fleet_mode = run_extras.get(fleet_class, "ps")
    device = run_extras.get(device_class, "cpu")
    selected_gpus = run_extras.get(selected_gpus_class, "0")
    executor_mode = "infer"

    single_envs = {}

    if device.upper() == "GPU":
        selected_gpus_num = len(selected_gpus.split(","))
        if selected_gpus_num != 1:
            raise ValueError(
                "Single Mode Only Support One GPU, Set Local Cluster Mode to use Multi-GPUS"
            )

        single_envs["selsected_gpus"] = selected_gpus
        single_envs["FLAGS_selected_gpus"] = selected_gpus

    single_envs["train.trainer.trainer"] = trainer
    single_envs["train.trainer.executor_mode"] = executor_mode
    single_envs["fleet_mode"] = fleet_mode
    single_envs["train.trainer.threads"] = "2"
    single_envs["train.trainer.platform"] = envs.get_platform()
    single_envs["train.trainer.engine"] = "single"

    set_runtime_envs(single_envs, args.model)
    trainer = TrainerFactory.create(args.model)
    return trainer
Exemple #13
0
def local_mpi_engine(args):
    print("launch cluster engine with cluster to run model: {}".format(
        args.model))
    from paddlerec.core.engine.local_mpi import LocalMPIEngine

    print("use 1X1 MPI ClusterTraining at localhost to run model: {}".format(
        args.model))

    mpi = util.run_which("mpirun")
    if not mpi:
        raise RuntimeError("can not find mpirun, please check environment")

    _envs = envs.load_yaml(args.model)
    run_extras = get_all_inters_from_yaml(args.model, ["train.", "runner."])
    trainer_class = run_extras.get("runner." + _envs["mode"] + ".runner_class",
                                   None)
    executor_mode = "train"
    distributed_strategy = run_extras.get(
        "runner." + _envs["mode"] + ".distribute_strategy", "async")
    fleet_mode = run_extras.get("runner." + _envs["mode"] + ".fleet_mode",
                                "ps")

    if trainer_class:
        trainer = trainer_class
    else:
        trainer = "GeneralTrainer"

    cluster_envs = {}
    cluster_envs["mpirun"] = mpi
    cluster_envs["train.trainer.trainer"] = trainer
    cluster_envs["log_dir"] = "logs"
    cluster_envs["train.trainer.engine"] = "local_cluster"
    cluster_envs["train.trainer.executor_mode"] = executor_mode
    cluster_envs["fleet_mode"] = fleet_mode
    cluster_envs["train.trainer.strategy"] = distributed_strategy
    cluster_envs["train.trainer.threads"] = "2"
    cluster_envs["train.trainer.engine"] = "local_cluster"
    cluster_envs["train.trainer.platform"] = envs.get_platform()

    set_runtime_envs(cluster_envs, args.model)
    launch = LocalMPIEngine(cluster_envs, args.model)
    return launch
Exemple #14
0
    def worker(mode):
        if not mode:
            raise ValueError("mode: {} can not be recognized")
        from paddlerec.core.engine.cluster.cluster import ClusterEngine

        run_extras = get_all_inters_from_yaml(args.model, ["runner."])

        trainer_class = ".".join(["runner", mode, "trainer_class"])
        fleet_class = ".".join(["runner", mode, "fleet_mode"])
        device_class = ".".join(["runner", mode, "device"])
        strategy_class = ".".join(["runner", mode, "distribute_strategy"])
        trainer = run_extras.get(trainer_class, "GeneralTrainer")
        fleet_mode = run_extras.get(fleet_class, "ps")
        device = run_extras.get(device_class, "cpu")
        distributed_strategy = run_extras.get(strategy_class, "async")
        executor_mode = "train"

        device = device.upper()
        fleet_mode = fleet_mode.upper()
        if fleet_mode == "COLLECTIVE" and device != "GPU":
            raise ValueError("COLLECTIVE can not be used without GPU")

        cluster_envs = {}

        cluster_envs["fleet_mode"] = fleet_mode
        cluster_envs["engine_role"] = "WORKER"
        cluster_envs["log_dir"] = "logs"
        cluster_envs["train.trainer.trainer"] = trainer
        cluster_envs["train.trainer.engine"] = "cluster"
        cluster_envs["train.trainer.executor_mode"] = executor_mode
        cluster_envs["train.trainer.strategy"] = distributed_strategy
        cluster_envs["train.trainer.threads"] = envs.get_runtime_environ(
            "CPU_NUM")
        cluster_envs["train.trainer.platform"] = envs.get_platform()
        print("launch {} engine with cluster to with model: {}".format(
            trainer, args.model))

        set_runtime_envs(cluster_envs, args.model)
        launch = ClusterEngine(None, args.model)
        return launch
Exemple #15
0
    def worker():
        role = "WORKER"

        _envs = envs.load_yaml(args.model)
        run_extras = get_all_inters_from_yaml(args.model,
                                              ["train.", "runner."])
        trainer_class = run_extras.get(
            "runner." + _envs["mode"] + ".trainer_class", None)

        if trainer_class:
            trainer = trainer_class
        else:
            trainer = "GeneralTrainer"

        executor_mode = "train"

        distributed_strategy = run_extras.get(
            "runner." + _envs["mode"] + ".distribute_strategy", "async")
        selected_gpus = run_extras.get(
            "runner." + _envs["mode"] + ".selected_gpus", "0")
        fleet_mode = run_extras.get("runner." + _envs["mode"] + ".fleet_mode",
                                    "ps")

        cluster_envs = {}
        cluster_envs["selected_gpus"] = selected_gpus
        cluster_envs["fleet_mode"] = fleet_mode
        cluster_envs["train.trainer.trainer"] = trainer
        cluster_envs["train.trainer.executor_mode"] = executor_mode
        cluster_envs["train.trainer.engine"] = "cluster"
        cluster_envs["train.trainer.strategy"] = distributed_strategy
        cluster_envs["train.trainer.threads"] = envs.get_runtime_environ(
            "CPU_NUM")
        cluster_envs["train.trainer.platform"] = envs.get_platform()
        print("launch {} engine with cluster to with model: {}".format(
            trainer, args.model))
        set_runtime_envs(cluster_envs, args.model)

        trainer = TrainerFactory.create(args.model)
        return trainer
Exemple #16
0
def local_mpi_engine(args):
    print("launch cluster engine with cluster to run model: {}".format(
        args.model))
    from paddlerec.core.engine.local_mpi import LocalMPIEngine

    print("use 1X1 MPI ClusterTraining at localhost to run model: {}".format(
        args.model))

    mpi = util.run_which("mpirun")
    if not mpi:
        raise RuntimeError("can not find mpirun, please check environment")
    cluster_envs = {}
    cluster_envs["mpirun"] = mpi
    cluster_envs["train.trainer.trainer"] = "CtrCodingTrainer"
    cluster_envs["log_dir"] = "logs"
    cluster_envs["train.trainer.engine"] = "local_cluster"

    cluster_envs["train.trainer.platform"] = envs.get_platform()

    set_runtime_envs(cluster_envs, args.model)
    launch = LocalMPIEngine(cluster_envs, args.model)
    return launch
Exemple #17
0
def local_cluster_engine(args):
    from paddlerec.core.engine.local_cluster import LocalClusterEngine

    trainer = get_trainer_prefix(args) + "ClusterTrainer"
    cluster_envs = {}
    cluster_envs["server_num"] = 1
    cluster_envs["worker_num"] = 1
    cluster_envs["start_port"] = envs.find_free_port()
    cluster_envs["log_dir"] = "logs"
    cluster_envs["train.trainer.trainer"] = trainer
    cluster_envs["train.trainer.strategy"] = "async"
    cluster_envs["train.trainer.threads"] = "2"
    cluster_envs["train.trainer.engine"] = "local_cluster"
    cluster_envs["train.trainer.platform"] = envs.get_platform()

    cluster_envs["CPU_NUM"] = "2"
    print("launch {} engine with cluster to run model: {}".format(
        trainer, args.model))

    set_runtime_envs(cluster_envs, args.model)
    launch = LocalClusterEngine(cluster_envs, args.model)
    return launch
Exemple #18
0
def local_cluster_engine(args):
    def get_worker_num(run_extras, workers):
        _envs = envs.load_yaml(args.model)
        mode = envs.get_runtime_environ("mode")
        workspace = envs.get_runtime_environ("workspace")
        phases_class = ".".join(["runner", mode, "phases"])
        phase_names = run_extras.get(phases_class)
        phases = []
        all_phases = _envs.get("phase")
        if phase_names is None:
            phases = all_phases
        else:
            for phase in all_phases:
                if phase["name"] in phase_names:
                    phases.append(phase)

        dataset_names = []
        for phase in phases:
            dataset_names.append(phase["dataset_name"])

        datapaths = []
        for dataset in _envs.get("dataset"):
            if dataset["name"] in dataset_names:
                datapaths.append(dataset["data_path"])

        if not datapaths:
            raise ValueError("data path must exist for training/inference")

        datapaths = [
            envs.workspace_adapter_by_specific(path, workspace)
            for path in datapaths
        ]

        all_workers = [len(os.listdir(path)) for path in datapaths]
        all_workers.append(workers)
        max_worker_num = min(all_workers)

        if max_worker_num >= workers:
            return workers

        print(
            "phases do not have enough datas for training, set worker/gpu cards num from {} to {}"
            .format(workers, max_worker_num))

        return max_worker_num

    from paddlerec.core.engine.local_cluster import LocalClusterEngine

    run_extras = get_all_inters_from_yaml(args.model, ["runner."])
    mode = envs.get_runtime_environ("mode")
    trainer_class = ".".join(["runner", mode, "trainer_class"])
    fleet_class = ".".join(["runner", mode, "fleet_mode"])
    device_class = ".".join(["runner", mode, "device"])
    selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])
    strategy_class = ".".join(["runner", mode, "distribute_strategy"])
    worker_class = ".".join(["runner", mode, "worker_num"])
    server_class = ".".join(["runner", mode, "server_num"])

    trainer = run_extras.get(trainer_class, "GeneralTrainer")
    fleet_mode = run_extras.get(fleet_class, "ps")
    device = run_extras.get(device_class, "cpu")
    selected_gpus = run_extras.get(selected_gpus_class, "0")
    distributed_strategy = run_extras.get(strategy_class, "async")
    executor_mode = "train"

    worker_num = run_extras.get(worker_class, 1)
    server_num = run_extras.get(server_class, 1)

    device = device.upper()
    fleet_mode = fleet_mode.upper()

    cluster_envs = {}

    # Todo: delete follow hard code when paddle support ps-gpu.
    if device == "CPU":
        fleet_mode = "PS"
    elif device == "GPU":
        fleet_mode = "COLLECTIVE"
    if fleet_mode == "PS" and device != "CPU":
        raise ValueError("PS can not be used with GPU")

    if fleet_mode == "COLLECTIVE" and device != "GPU":
        raise ValueError("COLLECTIVE can not be used without GPU")

    if fleet_mode == "PS":
        worker_num = get_worker_num(run_extras, worker_num)

    if fleet_mode == "COLLECTIVE":
        cluster_envs["selected_gpus"] = selected_gpus
        gpus = selected_gpus.split(",")
        worker_num = get_worker_num(run_extras, len(gpus))
        cluster_envs["selected_gpus"] = ','.join(gpus[:worker_num])

    cluster_envs["server_num"] = server_num
    cluster_envs["worker_num"] = worker_num
    cluster_envs["start_port"] = envs.find_free_port()
    cluster_envs["fleet_mode"] = fleet_mode
    cluster_envs["log_dir"] = "logs"
    cluster_envs["train.trainer.trainer"] = trainer
    cluster_envs["train.trainer.executor_mode"] = executor_mode
    cluster_envs["train.trainer.strategy"] = distributed_strategy
    cluster_envs["train.trainer.threads"] = "2"
    cluster_envs["CPU_NUM"] = cluster_envs["train.trainer.threads"]
    cluster_envs["train.trainer.engine"] = "local_cluster"
    cluster_envs["train.trainer.platform"] = envs.get_platform()

    print("launch {} engine with cluster to run model: {}".format(
        trainer, args.model))

    set_runtime_envs(cluster_envs, args.model)
    launch = LocalClusterEngine(cluster_envs, args.model)
    return launch