def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if not val_dataset: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model transforms = val_dataset.transforms image_list, image_dir = get_image_list(args.image_path) predict(model, model_path=args.model_path, transforms=transforms, image_list=image_list, image_dir=image_dir, save_dir=args.save_dir)
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model transforms = Compose(cfg.val_transforms) print(transforms) image_list, image_dir = get_image_list(args.image_path) logger.info('Number of predict images = {}'.format(len(image_list))) test_config = get_test_config(cfg, args) predict(model, model_path=args.model_path, transforms=transforms, image_list=image_list, image_dir=image_dir, save_dir=args.save_dir, **test_config)
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if not val_dataset: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model transforms = val_dataset.transforms image_list, image_dir = get_image_list(args.image_path) logger.info('Number of predict images = {}'.format(len(image_list))) config_check(cfg, val_dataset=val_dataset) predict( model, model_path=args.model_path, transforms=transforms, image_list=image_list, image_dir=image_dir, save_dir=args.save_dir, aug_pred=args.aug_pred, scales=args.scales, flip_horizontal=args.flip_horizontal, flip_vertical=args.flip_vertical, is_slide=args.is_slide, crop_size=args.crop_size, stride=args.stride, )
transforms = T.Compose([ T.Resize(target_size=(512, 512)), T.Normalize() ]) model = UNet(num_classes=3) #生成图片列表 image_list = [] with open('/home/aistudio/work/newdata/test_list.txt' ,'r') as f: for line in f.readlines(): image_list.append(line.split()[0]) predict( model, #换自己保存的模型文件 model_path = '/home/aistudio/my_save_model/best_model/model.pdparams', transforms=transforms, image_list=image_list, save_dir='/home/aistudio/save_model/results', ) # 9.预览分割结果 num = 6 img_list = random.sample(image_list, num) pre_path = 'save_model/results/pseudo_color_prediction' plt.figure(figsize=(12,num*4)) index = 1 for i in range(len(img_list)): plt.subplot(num,3,index) img_origin = cv2.imread(img_list[i],0) plt.title('origin') plt.xticks([])