Exemple #1
0
        def __init__(self,
                     height=64,
                     width=64,
                     with_r=False,
                     with_boundary=False):
            super(AddCoordsTh, self).__init__()
            self.with_r = with_r
            self.with_boundary = with_boundary
            device = torch.device(
                'cuda' if torch.cuda.is_available() else 'cpu')

            with torch.no_grad():
                x_coords = torch.arange(height).unsqueeze(1).expand(
                    height, width).float()
                y_coords = torch.arange(width).unsqueeze(0).expand(
                    height, width).float()
                x_coords = (x_coords / (height - 1)) * 2 - 1
                y_coords = (y_coords / (width - 1)) * 2 - 1
                coords = torch.stack([x_coords, y_coords],
                                     dim=0)  # (2, height, width)

                if self.with_r:
                    rr = torch.sqrt(
                        torch.pow(x_coords, 2) +
                        torch.pow(y_coords, 2))  # (height, width)
                    rr = (rr / torch.max(rr)).unsqueeze(0)
                    coords = torch.cat([coords, rr], dim=0)

                self.coords = coords.unsqueeze(0).to(
                    device)  # (1, 2 or 3, height, width)
                self.x_coords = x_coords.to(device)
                self.y_coords = y_coords.to(device)
Exemple #2
0
def normalize(x, eps=1e-6):
    """Apply min-max normalization."""
    x = x.contiguous()
    N, C, H, W = x.size()
    x_ = x.view(N * C, -1)
    max_val = porch.max(x_, dim=1, keepdim=True)[0]
    min_val = porch.min(x_, dim=1, keepdim=True)[0]
    x_ = (x_ - min_val) / (max_val - min_val + eps)
    out = x_.view(N, C, H, W)
    return out
Exemple #3
0
def normalize(x, eps=1e-6):
    """Apply min-max normalization."""
    # x = x.contiguous()
    x = torch.varbase_to_tensor(x)
    N, C, H, W = x.shape
    x_ = x.view(N * C, -1)
    max_val = torch.max(x_, dim=1, keepdim=True)[0]
    min_val = torch.min(x_, dim=1, keepdim=True)[0]
    x_ = (x_ - min_val) / (max_val - min_val + eps)
    x_ = torch.varbase_to_tensor(x_)
    out = x_.view(N, C, H, W)
    return out
    def get_preds_fromhm(hm):
        max, idx = torch.max(
            hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
        idx += 1
        preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
        preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
        preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)

        for i in range(preds.size(0)):
            for j in range(preds.size(1)):
                hm_ = hm[i, j, :]
                pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
                if pX > 0 and pX < 63 and pY > 0 and pY < 63:
                    diff = torch.FloatTensor(
                        [hm_[pY, pX + 1] - hm_[pY, pX - 1],
                         hm_[pY + 1, pX] - hm_[pY - 1, pX]])
                    preds[i, j].add_(diff.sign_().mul_(.25))

        preds.add_(-0.5)
        return preds
Exemple #5
0
 def max(self, dim=None, keepdim=False):
     return torch.max(self, dim=dim, keepdim=keepdim)