def test_sample_from_data(self, PredictService):
        predict_service = PredictService(mapping=[
            ('name', 'str'),
            ('sepal width', 'int'),
        ], )

        model = Mock()
        request_args = {'name': 'myflower', 'sepal width': 3}
        sample = predict_service.sample_from_data(model, request_args)
        assert sample[0] == 'myflower'
        assert sample[1] == 3
Exemple #2
0
    def test_sample_from_request(self, PredictService):
        predict_service = PredictService(mapping=[
            ('name', 'str'),
            ('sepal width', 'int'),
        ], )

        model = Mock()
        request = Mock(args={'name': 'myflower', 'sepal width': 3})
        sample, params = predict_service.sample_from_request(model, request)
        assert sample[0][0] == 'myflower'
        assert sample[0][1] == 3
Exemple #3
0
    def test_sample_from_data(self, PredictService):
        predict_service = PredictService(
            mapping=[
                ('name', 'str'),
                ('sepal width', 'int'),
                ],
            )

        model = Mock()
        request_args = {'name': 'myflower', 'sepal width': 3}
        sample = predict_service.sample_from_data(model, request_args)
        assert sample[0] == 'myflower'
        assert sample[1] == 3
    def test_sample_from_request(self, PredictService):
        predict_service = PredictService(
            mapping=[
                ('name', 'str'),
                ('sepal width', 'int'),
                ],
            )

        model = Mock()
        request = Mock(args={'name': 'myflower', 'sepal width': 3})
        sample, params = predict_service.sample_from_request(model, request)
        assert sample[0][0] == 'myflower'
        assert sample[0][1] == 3
    def test_predict_params(self, config, stream):
        from palladium.server import PredictService
        line = '[{"length": 1.0, "width": 1.0, "turbo": "true"}]'

        model = Mock()
        model.predict.return_value = np.array([[{'class': 'a'}]])
        model.turbo = False
        model.magic = False
        stream.model = model

        mapping = [
            ('length', 'float'),
            ('width', 'float'),
        ]
        params = [
            ('turbo', 'bool'),  # will be set by request args
            ('magic', 'bool'),  # default value will be used
        ]
        stream.predict_service = PredictService(
            mapping=mapping,
            params=params,
        )

        expected = [{'class': 'a'}]
        result = stream.process_line(line)
        assert result == expected
        assert model.predict.call_count == 1
        assert (model.predict.call_args[0][0] == np.array([[1.0, 1.0]])).all()
        assert model.predict.call_args[1]['turbo'] is True
        assert model.predict.call_args[1]['magic'] is False
    def test_unwrap_sample_post(self, PredictService, flask_app):
        predict_service = PredictService(
            mapping=[('text', 'str')],
            unwrap_sample=True,
        )
        model = Mock()
        model.predict.return_value = np.array([1, 2])
        with flask_app.test_request_context():
            request = Mock(
                json=[
                    {
                        'text': 'First piece of text'
                    },
                    {
                        'text': 'Second piece of text'
                    },
                ],
                method='POST',
                mimetype='application/json',
            )
            resp = predict_service(model, request)

        assert model.predict.call_args[0][0].ndim == 1
        assert (model.predict.call_args[0] == np.array(
            ['First piece of text', 'Second piece of text'])).all()
        resp_data = json.loads(resp.get_data(as_text=True))
        assert resp.status_code == 200
        assert resp_data == {
            "metadata": {
                "status": "OK",
                "error_code": 0,
            },
            "result": [1, 2],
        }
    def test_unwrap_sample_get(self, PredictService, flask_app):
        predict_service = PredictService(
            mapping=[('text', 'str')],
            unwrap_sample=True,
        )
        model = Mock()
        model.predict.return_value = np.array([1])
        with flask_app.test_request_context():
            request = Mock(
                args=dict([
                    ('text', 'Hi this is text'),
                ]),
                method='GET',
            )
            resp = predict_service(model, request)

        assert model.predict.call_args[0][0].ndim == 1
        model.predict.assert_called_with(np.array(['Hi this is text']))
        resp_data = json.loads(resp.get_data(as_text=True))
        assert resp.status_code == 200
        assert resp_data == {
            "metadata": {
                "status": "OK",
                "error_code": 0,
            },
            "result": 1,
        }
    def test_post_request(self, PredictService, flask_app):
        model = Mock()
        model.predict.return_value = np.array([3, 2])

        service = PredictService(
            mapping=[
                ('sepal length', 'float'),
                ('sepal width', 'float'),
                ('petal length', 'float'),
                ('petal width', 'float'),
            ],
            params=[
                ('threshold', 'float'),
            ],
        )

        request = Mock(
            json=[
                {
                    'sepal length': '5.2',
                    'sepal width': '3.5',
                    'petal length': '1.5',
                    'petal width': '0.2',
                },
                {
                    'sepal length': '5.7',
                    'sepal width': '4.0',
                    'petal length': '2.0',
                    'petal width': '0.7',
                },
            ],
            args=dict(threshold=1.0),
            method='POST',
            mimetype='application/json',
        )

        with flask_app.test_request_context():
            resp = service(model, request)

        assert (model.predict.call_args[0][0] == np.array(
            [
                [5.2, 3.5, 1.5, 0.2],
                [5.7, 4.0, 2.0, 0.7],
            ],
            dtype='object',
        )).all()
        assert model.predict.call_args[1]['threshold'] == 1.0

        assert resp.status_code == 200
        expected_resp_data = {
            "metadata": {
                "status": "OK",
                "error_code": 0,
            },
            "result": [3, 2],
        }

        assert json.loads(resp.get_data(as_text=True)) == expected_resp_data
 def test_probas(self, PredictService, flask_app):
     model = Mock()
     model.predict_proba.return_value = np.array([[0.1, 0.5, math.pi]])
     predict_service = PredictService(mapping=[], predict_proba=True)
     with flask_app.test_request_context():
         resp = predict_service(model, request)
     resp_data = json.loads(resp.get_data(as_text=True))
     assert resp.status_code == 200
     assert resp_data == {
         "metadata": {
             "status": "OK",
             "error_code": 0,
         },
         "result": [0.1, 0.5, math.pi],
     }
 def test_generic_error(self, PredictService, flask_app):
     predict_service = PredictService(mapping=[])
     model = Mock()
     request = Mock()
     with patch.object(predict_service, 'do') as psd:
         with flask_app.test_request_context():
             psd.side_effect = KeyError("model")
             resp = predict_service(model, request)
     resp_data = json.loads(resp.get_data(as_text=True))
     assert resp.status_code == 500
     assert resp_data == {
         "metadata": {
             "status": "ERROR",
             "error_code": -1,
             "error_message": "KeyError: 'model'",
         }
     }
 def test_predict_error(self, PredictService, flask_app):
     from palladium.interfaces import PredictError
     predict_service = PredictService(mapping=[])
     model = Mock()
     request = Mock()
     with patch.object(predict_service, 'do') as psd:
         with flask_app.test_request_context():
             psd.side_effect = PredictError("mymessage", 123)
             resp = predict_service(model, request)
     resp_data = json.loads(resp.get_data(as_text=True))
     assert resp.status_code == 500
     assert resp_data == {
         "metadata": {
             "status": "ERROR",
             "error_code": 123,
             "error_message": "mymessage",
         }
     }
Exemple #12
0
 def test_probas(self, PredictService, flask_app):
     model = Mock()
     model.predict_proba.return_value = np.array([[0.1, 0.5, 0.4]])
     predict_service = PredictService(mapping=[], predict_proba=True)
     with flask_app.test_request_context():
         with patch('palladium.util.get_config') as get_config:
             meta_dict = {'service_metadata': {}}
             get_config.return_value = meta_dict
             resp = predict_service(model, request)
     resp_data = json.loads(resp.get_data(as_text=True))
     assert resp.status_code == 200
     assert resp_data == {
         "metadata": {
             "status": "OK",
             "error_code": 0,
         },
         "result": [0.1, 0.5, 0.4],
     }
 def test_bad_request(self, PredictService, flask_app):
     predict_service = PredictService(mapping=[])
     model = Mock()
     request = Mock()
     with patch.object(predict_service, 'do') as psd:
         with flask_app.test_request_context():
             bad_request = BadRequest()
             bad_request.args = ('daniel', )
             psd.side_effect = bad_request
             resp = predict_service(model, request)
     resp_data = json.loads(resp.get_data(as_text=True))
     assert resp.status_code == 400
     assert resp_data == {
         "metadata": {
             "status": "ERROR",
             "error_code": -1,
             "error_message": "BadRequest: ('daniel',)"
         }
     }
    def test_functional(self, PredictService, flask_app):
        model = Mock()
        model.threshold = 0.3
        model.size = 10
        # needed as hasattr would evaluate to True otherwise
        del model.threshold2
        del model.size2
        model.predict.return_value = np.array(['class1'])
        service = PredictService(
            mapping=[
                ('sepal length', 'float'),
                ('sepal width', 'float'),
                ('petal length', 'float'),
                ('petal width', 'float'),
                ('color', 'str'),
                ('age', 'int'),
                ('active', 'bool'),
                ('austrian', 'bool'),
            ],
            params=[
                ('threshold', 'float'),  # default will be overwritten
                ('size', 'int'),  # not provided, default value kept
                ('threshold2', 'float'),  # will be used, no default value
                ('size2', 'int'),  # not provided, no default value
            ])

        with flask_app.test_request_context():
            with patch('palladium.util.get_config') as get_config:
                get_config.return_value = {
                    'service_metadata': {
                        'service_name': 'iris',
                        'service_version': '0.1'
                    }
                }
                request = Mock(
                    args=dict([
                        ('sepal length', '5.2'),
                        ('sepal width', '3.5'),
                        ('petal length', '1.5'),
                        ('petal width', '0.2'),
                        ('color', 'purple'),
                        ('age', '1'),
                        ('active', 'True'),
                        ('austrian', 'False'),
                        ('threshold', '0.7'),
                        ('threshold2', '0.8'),
                    ]),
                    method='GET',
                )
                resp = service(model, request)

        assert (model.predict.call_args[0][0] == np.array(
            [[5.2, 3.5, 1.5, 0.2, 'purple', 1, True, False]],
            dtype='object')).all()
        assert model.predict.call_args[1]['threshold'] == 0.7
        assert model.predict.call_args[1]['size'] == 10
        assert model.predict.call_args[1]['threshold2'] == 0.8
        assert 'size2' not in model.predict.call_args[1]
        assert resp.status_code == 200
        expected_resp_data = {
            "metadata": {
                "status": "OK",
                "error_code": 0,
                "service_name": "iris",
                "service_version": "0.1",
            },
            "result": "class1"
        }

        assert json.loads(resp.get_data(as_text=True)) == expected_resp_data