def test_iceland(): net = pn.iceland() pp.runpp(net) assert len(net.bus) == 189 assert len(net.line) + len(net.trafo) == 206 assert len(net.ext_grid) + len(net.gen) + len(net.sgen) == 35 assert net.converged
def test_iceland(): net = pn.iceland() assert net.converged pp.runpp(net, trafo_model='pi') assert len(net.bus) == 189 assert len(net.line) + len(net.trafo) == 206 n_gen = 35 assert len(net.ext_grid) + len(net.gen) + len(net.sgen) == n_gen assert len(net.polynomial_cost) == n_gen assert net.converged
def test_iceland(): net = pn.iceland() assert net.converged _ppc_element_test(net, 189, 206, 35, True)
if show_sun: rewards.append(sol[env._current_step - 1]) hues.append('Sun') t_steps.append(t_step) hours.append(hour) if show_demand: rewards.append(demand[env._current_step - 1]) hues.append('Demand') t_steps.append(t_step) hours.append(hour) if __name__ == '__main__': flex = 0.3 net = iceland() env = ActiveEnv(base_net=net, seed=3) env.set_parameters({'demand_std': 0, 'flexibility': flex}) forecast = env.demand_forecasts[:, 0] a = -np.ones(env.action_space.shape) # max decrease in consumption a = env.action_space.sample() env.step(a) net = env.powergrid consumption = net.res_load['p_mw'] / net.load['sn_mva'] load_ratio = consumption / forecast assert np.linalg.norm(load_ratio - (1 + a * flex)) < 10e-6 print('haha')