def test_ow_index(): net = simple_four_bus_system() steps = [3, 5, 7] p_data = pd.DataFrame(index=steps, columns=["0", "1"], data=[ [0.01, 0.02], [0.03, 0.04], [0.05, 0.06], ]) v_data = pd.DataFrame(index=steps, columns=["0"], data=[1.01, 1.03, 1.02]) ds_p = DFData(p_data) ds_v = DFData(v_data) ct.ConstControl(net, element='load', variable='p_mw', element_index=net.load.index.tolist(), data_source=ds_p, profile_name=p_data.columns) ct.ConstControl(net, element='ext_grid', variable='vm_pu', element_index=0, data_source=ds_v, profile_name='0') ow = OutputWriter(net) ow.log_variable('res_bus', 'vm_pu') ow.log_variable('res_line', 'loading_percent') run_timeseries(net, time_steps=p_data.index, verbose=False) assert np.all(ow.output["res_line.loading_percent"].index == p_data.index)
def _data_source(): """ :return: :rtype: """ profiles_sink = pd.read_csv(os.path.join(pp_dir, 'test', 'pipeflow_internals', 'data', 'test_time_series_sink_profiles.csv'), index_col=0) profiles_source = pd.read_csv(os.path.join(pp_dir, 'test', 'pipeflow_internals', 'data', 'test_time_series_source_profiles.csv'), index_col=0) ds_sink = DFData(profiles_sink) ds_source = DFData(profiles_source) return ds_sink, ds_source
def test_new_pp_object_io(): net = networks.mv_oberrhein() ds = DFData(pd.DataFrame(data=np.array([[0, 1, 2], [7, 8, 9]]))) control.ConstControl(net, 'sgen', 'p_mw', 42, profile_name=0, data_source=ds) control.ContinuousTapControl(net, 142, 1) obj = net.controller.object.at[0] obj.run = pp.runpp s = json.dumps(net, cls=PPJSONEncoder) net1 = json.loads(s, cls=PPJSONDecoder) obj1 = net1.controller.object.at[0] obj2 = net1.controller.object.at[1] assert isinstance(obj1, control.ConstControl) assert isinstance(obj2, control.ContinuousTapControl) assert obj1.run is pp.runpp assert isinstance(obj1.data_source, DFData) assert isinstance(obj1.data_source.df, pd.DataFrame)
def create_data_source(self, mode): # The function to create data frame for the loads profiles = pd.DataFrame() # For high load, 5-10% more than the initial value if mode == 'high': for i in range(len(self.net.load)): profiles['load_{}_p'.format( str(i))] = (1.05 + (0.05 * np.random.random(self.n_time_steps)) ) * self.net.load.p_mw[i] profiles['load_{}_q'.format( str(i))] = (1.05 + (0.05 * np.random.random(self.n_time_steps)) ) * self.net.load.q_mvar[i] # For low load, 5-10% less than the initial value elif mode == 'low': for i in range(len(self.net.load)): profiles['load_{}_p'.format( str(i))] = (0.90 + (0.05 * np.random.random(self.n_time_steps)) ) * self.net.load.p_mw[i] profiles['load_{}_q'.format( str(i))] = (0.90 + (0.05 * np.random.random(self.n_time_steps)) ) * self.net.load.q_mvar[i] ds = DFData(profiles) return profiles, ds
def create_data_source(n_timesteps=24): profiles = pd.DataFrame() profiles['load1_p'] = np.random.random(n_timesteps) * 10. profiles['sgen1_p'] = np.random.random(n_timesteps) * 20. ds = DFData(profiles) return profiles, ds
def create_data_source(n_timesteps=24): profiles = pd.DataFrame() profiles['load1_p'] = julyLoadProfile profiles['sgen1_p'] = july_PV_Production ds = DFData(profiles) return profiles, ds
def _data_source(): """ Read out existing time series (csv files) for sinks and sources. :return: Time series values from csv files for sink and source :rtype: DataFrame """ profiles_sink = pd.read_csv(os.path.join( pp_dir, 'test', 'pipeflow_internals', 'data', 'test_time_series_sink_profiles.csv'), index_col=0) profiles_source = pd.read_csv(os.path.join( pp_dir, 'test', 'pipeflow_internals', 'data', 'test_time_series_source_profiles.csv'), index_col=0) ds_sink = DFData(profiles_sink) ds_source = DFData(profiles_source) return ds_sink, ds_source
def apply_const_controllers(net, absolute_profiles_values): """ Applys ConstControl instances to the net. As a result, one can easily run timeseries with given power values of e.g. loads, sgens, storages or gens. INPUT: **net** - pandapower net **absolute_profiles_values** - dict of Dataframes with absolute values for the profiles, keys should be tuples of length 2 (element and parameter), DataFrame size is timesteps x number of elements """ n_time_steps = dict() for (elm, param), values in absolute_profiles_values.items(): if values.shape[1]: # check DataFrame shape[0] == time_steps if elm in n_time_steps.keys(): if n_time_steps[elm] != values.shape[0]: logger.warning( "There are two profiles for %ss which have different " % elm + "amount of time steps.") else: n_time_steps[elm] = values.shape[0] # check DataFrame shape[1] == net[elm].index unknown_idx = values.columns.difference(net[elm].index) if len(unknown_idx): logger.warning( "In absolute_profiles_values[%s][%s], " % (elm, param) + "there are indices additional & unknown to net[%s].index" % elm + str(["%i" % i for i in unknown_idx])) missing_idx = net[elm].index.difference(values.columns) if len(missing_idx): logger.warning( "In absolute_profiles_values[%s][%s], " % (elm, param) + "these indices are missing compared to net[%s].index" % elm + str(["%i" % i for i in missing_idx])) # apply const controllers idx = list(net[elm].index.intersection(values.columns)) ConstControl(net, element=elm, variable=param, element_index=idx, profile_name=idx, data_source=DFData( absolute_profiles_values[(elm, param)][idx])) # compare all DataFrame shape[0] == time_steps if len(set(n_time_steps.values())) > 1: logger.warning("The profiles have different amount of time steps:") logger.warning(n_time_steps)
def load_input(data): profiles = pd.DataFrame() profiles['load1_p'] = data.loc[:]['Node_1'] / 1000000 profiles['load2_p'] = data.loc[:]['Node_2'] / 1000000 profiles['load3_p'] = data.loc[:]['Node_3'] / 1000000 profiles['load4_p'] = data.loc[:]['Node_4'] / 1000000 profiles['load5_p'] = data.loc[:]['Node_5'] / 1000000 # profiles['load1_p'] = data.loc[:]['HH_1'] * 10 / 1000000 # profiles['load2_p'] = data.loc[:]['HH_2'] * 10 / 1000000 # profiles['load3_p'] = data.loc[:]['HH_3'] * 10 / 1000000 # profiles['load4_p'] = data.loc[:]['HH_4'] * 10 / 1000000 # profiles['load5_p'] = data.loc[:]['HH_5'] * 10 / 1000000 ds = DFData(profiles) return profiles, ds
def test_output_writer_log(simple_test_net): net = simple_test_net # timeseries data df = pd.DataFrame([[15, 30, 2], [12, 27, 1.5], [7, 29, 2.1]]) ds = DFData(df) # Create gen controller with datasource ct.ConstControl(net, element="load", variable="p_mw", element_index=[0, 2], data_source=ds, profile_name=[0, 2]) # Create, add output and set outputwriter ow = OutputWriter(net, output_path=tempfile.gettempdir()) ow.remove_log_variable("res_bus") orig_index = [0, 1] ow.log_variable("res_bus", "vm_pu", orig_index) ow.log_variable("res_sgen", "p_mw") ow.log_variable("res_sgen", "q_mvar") # Run timeseries run_timeseries(net, time_steps=range(2), verbose=False) # --- double logged variables handling ow2 = copy.deepcopy(ow) new_idx = 2 ow2.log_variable("res_bus", "vm_pu", new_idx, eval_name="test") run_timeseries(net, time_steps=range(2), output_writer=ow2, verbose=False) assert all(ow2.output["res_bus.vm_pu"].columns == orig_index + [new_idx]) # Todo: This test makes no sense if res_bus is logged by default # ow3 = copy.deepcopy(ow) # new_idx = [2, 3] # ow3.log_variable("res_bus", "vm_pu", new_idx) # run_timeseries(net, time_steps=range(2), output_writer=ow3) # assert all(ow3.output["res_bus.vm_pu"].columns == orig_index + new_idx) ow4 = copy.deepcopy(ow) new_idx = [2, 4] ow4.log_variable("res_bus", "vm_pu", new_idx, eval_name=["test1", "test2"]) run_timeseries(net, time_steps=range(2), output_writer=ow4, verbose=False) assert all(ow4.output["res_bus.vm_pu"].columns == orig_index + new_idx)
def create_data_source(net, mode='', n_timesteps=30): profiles = pd.DataFrame() if mode == 'High Load': for i in range(len(net.load)): profiles['load{}_P'.format(str(i))] = 1.05 * net.load.p_mw[i] + ( 0.05 * np.random.random(n_timesteps) * net.load.p_mw[i]) profiles['load{}_Q'.format(str(i))] = 1.05 * net.load.q_mvar[i] + ( 0.05 * np.random.random(n_timesteps) * net.load.q_mvar[i]) elif mode == 'Low Load': for i in range(len(net.load)): profiles['load{}_P'.format(str(i))] = 0.90 * net.load.p_mw[i] + ( 0.05 * np.random.random(n_timesteps) * net.load.p_mw[i]) profiles['load{}_Q'.format(str(i))] = 0.90 * net.load.q_mvar[i] + ( 0.05 * np.random.random(n_timesteps) * net.load.q_mvar[i]) ds = DFData(profiles) return profiles, ds
def create_data_source(n_timesteps=10): profiles = pd.DataFrame() profiles['load1'] = np.random.random(n_timesteps) * 2e1 profiles['load2_mv_p'] = np.random.random(n_timesteps) * 4e1 profiles['load2_mv_q'] = np.random.random(n_timesteps) * 1e1 profiles['load3_hv_p'] = profiles.load2_mv_p + abs(np.random.random()) profiles['load3_hv_q'] = profiles.load2_mv_q + abs(np.random.random()) profiles['slack_v'] = np.clip( np.random.random(n_timesteps) + 0.5, 0.8, 1.2) profiles['trafo_v'] = np.clip( np.random.random(n_timesteps) + 0.5, 0.9, 1.1) profiles["trafo_tap"] = np.random.randint(-3, 3, n_timesteps) ds = DFData(profiles) return profiles, ds
def create_data_source(n_timesteps=60, state='NS'): profiles = pd.DataFrame() if state == 'HL': profiles['load1_p'] = np.random.random(n_timesteps) * 90 * 1.1 profiles['load2_p'] = np.random.random(n_timesteps) * 100 * 1.1 profiles['load3_p'] = np.random.random(n_timesteps) * 125 * 1.1 if state == 'LL': profiles['load1_p'] = np.random.random(n_timesteps) * 90 * 0.9 profiles['load2_p'] = np.random.random(n_timesteps) * 100 * 0.9 profiles['load3_p'] = np.random.random(n_timesteps) * 125 * 0.9 if state == 'NS': profiles['load1_p'] = np.random.random(n_timesteps) * 90 profiles['load2_p'] = np.random.random(n_timesteps) * 100 profiles['load3_p'] = np.random.random(n_timesteps) * 125 profiles['sgen1_p'] = np.random.random(n_timesteps) * 163 if state in ['NS', 'HL', 'LL', 'LD']: profiles['sgen2_p'] = np.random.random(n_timesteps) * 85 ds = DFData(profiles) return profiles, ds
def release_control_test_network(): # empty net net = pp.create_empty_network("net", add_stdtypes=False) # fluid pp.create_fluid_from_lib(net, "water", overwrite=True) # junctions pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 0", index=None, in_service=True, type="junction", geodata=None) pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 1") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 2") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 3") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 4") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 5") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 6") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 7") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 8") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 9") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 10") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 11") pp.create_junction(net, pn_bar=3, tfluid_k=293, height_m=0, name="Junction 12") # pipes pp.create_pipe_from_parameters(net, from_junction=0, to_junction=8, length_km=3, diameter_m=0.01, k_mm=1, loss_coefficient=0, sections=10, alpha_w_per_m2k=10, text_k=293, qext_w=0., name="Pipe 0", index=None, geodata=None, in_service=True, type="pipe") pp.create_pipe_from_parameters(net, 9, 2, length_km=6, diameter_m=0.075, k_mm=.1, sections=10, alpha_w_per_m2k=3, name="Pipe 1") pp.create_pipe_from_parameters(net, 2, 12, length_km=5, diameter_m=0.06, k_mm=.1, sections=10, alpha_w_per_m2k=20, name="Pipe 2") pp.create_pipe_from_parameters(net, 4, 12, length_km=0.1, diameter_m=0.07, k_mm=.1, sections=10, alpha_w_per_m2k=2, name="Pipe 3") pp.create_pipe_from_parameters(net, 5, 3, length_km=1, diameter_m=0.09, k_mm=.1, sections=10, alpha_w_per_m2k=3, name="Pipe 4") pp.create_pipe_from_parameters(net, 4, 11, length_km=2.5, diameter_m=0.08, k_mm=.1, sections=10, alpha_w_per_m2k=15, name="Pipe 5") pp.create_pipe_from_parameters(net, 7, 6, length_km=4.5, diameter_m=0.085, k_mm=.1, sections=10, alpha_w_per_m2k=2.5, name="Pipe 6") pp.create_pipe_from_parameters(net, 1, 7, length_km=4, diameter_m=0.03, k_mm=.1, sections=10, alpha_w_per_m2k=1, name="Pipe 7") # external grids pp.create_ext_grid(net, junction=0, p_bar=3, t_k=300, name="External Grid 0", in_service=True, index=None, type="pt") pp.create_ext_grid(net, 1, p_bar=5, t_k=350, name="External Grid 1", type="pt") # sinks pp.create_sink(net, junction=2, mdot_kg_per_s=0.2, scaling=1., name="Sink 0", index=None, in_service=True, type="sink") pp.create_sink(net, 3, mdot_kg_per_s=0.1, name="Sink 1") pp.create_sink(net, 4, mdot_kg_per_s=0.5, name="Sink 2") pp.create_sink(net, 5, mdot_kg_per_s=0.07, name="Sink 3") pp.create_sink(net, 6, mdot_kg_per_s=0.09, name="Sink 4") pp.create_sink(net, 7, mdot_kg_per_s=0.1, name="Sink 5") # sources pp.create_source(net, junction=8, mdot_kg_per_s=0.1, scaling=1., name="Source 0", index=None, in_service=True, type="source") pp.create_source(net, junction=9, mdot_kg_per_s=0.03, name="Source 1") pp.create_source(net, junction=10, mdot_kg_per_s=0.04, name="Source 2") pp.create_source(net, junction=11, mdot_kg_per_s=0.09, name="Source 3") # valves pp.create_valve(net, from_junction=8, to_junction=9, diameter_m=0.1, opened=True, loss_coefficient=0, name="Valve 0", index=None, type="valve") pp.create_valve(net, 9, 4, diameter_m=0.05, opened=True, name="Valve 1") # pump pp.create_pump_from_parameters(net, from_junction=8, to_junction=3, new_std_type_name="Pump", pressure_list=[6.1, 5.8, 4], flowrate_list=[0, 19, 83], reg_polynomial_degree=2, poly_coefficents=None, name=None, index=None, in_service=True, type="pump") # circulation pump mass pp.create_circ_pump_const_mass_flow(net, from_junction=3, to_junction=4, p_bar=6, mdot_kg_per_s=1, t_k=290, name="Circ. Pump Mass", index=None, in_service=True, type="pt") # circulation pump pressure pp.create_circ_pump_const_pressure(net, from_junction=11, to_junction=5, p_bar=5, plift_bar=2, t_k=290, name="Circ. Pump Pressure", index=None, in_service=True, type="pt") # heat exchanger pp.create_heat_exchanger(net, from_junction=10, to_junction=6, diameter_m=0.08, qext_w=50, loss_coefficient=0, name="Heat Exchanger 0", index=None, in_service=True, type="heat_exchanger") pp.create_heat_exchanger(net, from_junction=4, to_junction=10, diameter_m=0.08, qext_w=28000, loss_coefficient=0, name="Heat Exchanger 1", index=None, in_service=True, type="heat_exchanger") # time series profiles_sink = pd.read_csv(os.path.join(pp_dir, 'test', 'api', 'release_cycle', 'release_control_test_sink_profiles.csv'), index_col=0) profiles_source = pd.read_csv(os.path.join(pp_dir, 'test', 'api', 'release_cycle', 'release_control_test_source_profiles.csv'), index_col=0) ds_sink = DFData(profiles_sink) ds_source = DFData(profiles_source) const_sink = control.ConstControl(net, element='sink', variable='mdot_kg_per_s', element_index=net.sink.index.values, data_source=ds_sink, profile_name=net.sink.index.values.astype(str)) const_source = control.ConstControl(net, element='source', variable='mdot_kg_per_s', element_index=net.source.index.values, data_source=ds_source, profile_name=net.source.index.values.astype(str)) const_sink.initial_run = False const_source.initial_run = False pp.pipeflow(net) pp.to_json(net, os.path.join(path, 'example_%s.json' % pp.__version__)) return net