Exemple #1
0
    def asfreq(self, freq=None, how='E'):
        """
        Convert the PeriodIndex to the specified frequency `freq`.

        Parameters
        ----------

        freq : str
            a frequency
        how : str {'E', 'S'}
            'E', 'END', or 'FINISH' for end,
            'S', 'START', or 'BEGIN' for start.
            Whether the elements should be aligned to the end
            or start within pa period. January 31st ('END') vs.
            Janury 1st ('START') for example.

        Returns
        -------

        new : PeriodIndex with the new frequency

        Examples
        --------
        >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A')
        >>> pidx
        <class 'pandas.core.indexes.period.PeriodIndex'>
        [2010, ..., 2015]
        Length: 6, Freq: A-DEC

        >>> pidx.asfreq('M')
        <class 'pandas.core.indexes.period.PeriodIndex'>
        [2010-12, ..., 2015-12]
        Length: 6, Freq: M

        >>> pidx.asfreq('M', how='S')
        <class 'pandas.core.indexes.period.PeriodIndex'>
        [2010-01, ..., 2015-01]
        Length: 6, Freq: M
        """
        how = _validate_end_alias(how)

        freq = Period._maybe_convert_freq(freq)

        base1, mult1 = _gfc(self.freq)
        base2, mult2 = _gfc(freq)

        asi8 = self.asi8
        # mult1 can't be negative or 0
        end = how == 'E'
        if end:
            ordinal = asi8 + mult1 - 1
        else:
            ordinal = asi8

        new_data = period.period_asfreq_arr(ordinal, base1, base2, end)

        if self.hasnans:
            new_data[self._isnan] = tslib.iNaT

        return self._simple_new(new_data, self.name, freq=freq)
Exemple #2
0
    def asfreq(self, freq=None, how='E'):
        """
        Convert the PeriodIndex to the specified frequency `freq`.

        Parameters
        ----------

        freq : str
            a frequency
        how : str {'E', 'S'}
            'E', 'END', or 'FINISH' for end,
            'S', 'START', or 'BEGIN' for start.
            Whether the elements should be aligned to the end
            or start within pa period. January 31st ('END') vs.
            Janury 1st ('START') for example.

        Returns
        -------

        new : PeriodIndex with the new frequency

        Examples
        --------
        >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A')
        >>> pidx
        <class 'pandas.core.indexes.period.PeriodIndex'>
        [2010, ..., 2015]
        Length: 6, Freq: A-DEC

        >>> pidx.asfreq('M')
        <class 'pandas.core.indexes.period.PeriodIndex'>
        [2010-12, ..., 2015-12]
        Length: 6, Freq: M

        >>> pidx.asfreq('M', how='S')
        <class 'pandas.core.indexes.period.PeriodIndex'>
        [2010-01, ..., 2015-01]
        Length: 6, Freq: M
        """
        how = _validate_end_alias(how)

        freq = Period._maybe_convert_freq(freq)

        base1, mult1 = _gfc(self.freq)
        base2, mult2 = _gfc(freq)

        asi8 = self.asi8
        # mult1 can't be negative or 0
        end = how == 'E'
        if end:
            ordinal = asi8 + mult1 - 1
        else:
            ordinal = asi8

        new_data = period.period_asfreq_arr(ordinal, base1, base2, end)

        if self.hasnans:
            new_data[self._isnan] = tslib.iNaT

        return self._simple_new(new_data, self.name, freq=freq)
Exemple #3
0
    def asfreq(self, freq=None, how="E") -> "PeriodArray":
        """
        Convert the Period Array/Index to the specified frequency `freq`.

        Parameters
        ----------
        freq : str
            A frequency.
        how : str {'E', 'S'}
            Whether the elements should be aligned to the end
            or start within pa period.

            * 'E', 'END', or 'FINISH' for end,
            * 'S', 'START', or 'BEGIN' for start.

            January 31st ('END') vs. January 1st ('START') for example.

        Returns
        -------
        Period Array/Index
            Constructed with the new frequency.

        Examples
        --------
        >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A')
        >>> pidx
        PeriodIndex(['2010', '2011', '2012', '2013', '2014', '2015'],
        dtype='period[A-DEC]', freq='A-DEC')

        >>> pidx.asfreq('M')
        PeriodIndex(['2010-12', '2011-12', '2012-12', '2013-12', '2014-12',
        '2015-12'], dtype='period[M]', freq='M')

        >>> pidx.asfreq('M', how='S')
        PeriodIndex(['2010-01', '2011-01', '2012-01', '2013-01', '2014-01',
        '2015-01'], dtype='period[M]', freq='M')
        """
        how = libperiod._validate_end_alias(how)

        freq = Period._maybe_convert_freq(freq)

        base1, mult1 = libfrequencies.get_freq_code(self.freq)
        base2, mult2 = libfrequencies.get_freq_code(freq)

        asi8 = self.asi8
        # mult1 can't be negative or 0
        end = how == "E"
        if end:
            ordinal = asi8 + mult1 - 1
        else:
            ordinal = asi8

        new_data = period_asfreq_arr(ordinal, base1, base2, end)

        if self._hasnans:
            new_data[self._isnan] = iNaT

        return type(self)(new_data, freq=freq)
Exemple #4
0
    def asfreq(self, freq=None, how='E'):
        """
        Convert the Period Array/Index to the specified frequency `freq`.

        Parameters
        ----------
        freq : str
            a frequency
        how : str {'E', 'S'}
            'E', 'END', or 'FINISH' for end,
            'S', 'START', or 'BEGIN' for start.
            Whether the elements should be aligned to the end
            or start within pa period. January 31st ('END') vs.
            January 1st ('START') for example.

        Returns
        -------
        new : Period Array/Index with the new frequency

        Examples
        --------
        >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A')
        >>> pidx
        PeriodIndex(['2010', '2011', '2012', '2013', '2014', '2015'],
        dtype='period[A-DEC]', freq='A-DEC')

        >>> pidx.asfreq('M')
        PeriodIndex(['2010-12', '2011-12', '2012-12', '2013-12', '2014-12',
        '2015-12'], dtype='period[M]', freq='M')

        >>> pidx.asfreq('M', how='S')
        PeriodIndex(['2010-01', '2011-01', '2012-01', '2013-01', '2014-01',
        '2015-01'], dtype='period[M]', freq='M')
        """
        how = libperiod._validate_end_alias(how)

        freq = Period._maybe_convert_freq(freq)

        base1, mult1 = libfrequencies.get_freq_code(self.freq)
        base2, mult2 = libfrequencies.get_freq_code(freq)

        asi8 = self.asi8
        # mult1 can't be negative or 0
        end = how == 'E'
        if end:
            ordinal = asi8 + mult1 - 1
        else:
            ordinal = asi8

        new_data = period_asfreq_arr(ordinal, base1, base2, end)

        if self._hasnans:
            new_data[self._isnan] = iNaT

        return type(self)(new_data, freq=freq)
Exemple #5
0
    def __new__(cls,
                data=None,
                ordinal=None,
                freq=None,
                start=None,
                end=None,
                periods=None,
                copy=False,
                name=None,
                tz=None,
                dtype=None,
                **kwargs):

        if periods is not None:
            if is_float(periods):
                periods = int(periods)
            elif not is_integer(periods):
                msg = 'periods must be a number, got {periods}'
                raise TypeError(msg.format(periods=periods))

        if name is None and hasattr(data, 'name'):
            name = data.name

        if dtype is not None:
            dtype = pandas_dtype(dtype)
            if not is_period_dtype(dtype):
                raise ValueError('dtype must be PeriodDtype')
            if freq is None:
                freq = dtype.freq
            elif freq != dtype.freq:
                msg = 'specified freq and dtype are different'
                raise IncompatibleFrequency(msg)

        # coerce freq to freq object, otherwise it can be coerced elementwise
        # which is slow
        if freq:
            freq = Period._maybe_convert_freq(freq)

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods, freq,
                                                 kwargs)
            return cls._from_ordinals(data, name=name, freq=freq)

        if isinstance(data, PeriodIndex):
            if freq is None or freq == data.freq:  # no freq change
                freq = data.freq
                data = data._values
            else:
                base1, _ = _gfc(data.freq)
                base2, _ = _gfc(freq)
                data = period.period_asfreq_arr(data._values, base1, base2, 1)
            return cls._simple_new(data, name=name, freq=freq)

        # not array / index
        if not isinstance(
                data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)):
            if is_scalar(data) or isinstance(data, Period):
                cls._scalar_data_error(data)

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data)

        # datetime other than period
        if is_datetime64_dtype(data.dtype):
            data = dt64arr_to_periodarr(data, freq, tz)
            return cls._from_ordinals(data, name=name, freq=freq)

        # check not floats
        if infer_dtype(data) == 'floating' and len(data) > 0:
            raise TypeError("PeriodIndex does not allow "
                            "floating point in construction")

        # anything else, likely an array of strings or periods
        data = _ensure_object(data)
        freq = freq or period.extract_freq(data)
        data = period.extract_ordinals(data, freq)
        return cls._from_ordinals(data, name=name, freq=freq)
Exemple #6
0
    def asfreq(self, freq=None, how: str = "E") -> PeriodArray:
        """
        Convert the {klass} to the specified frequency `freq`.

        Equivalent to applying :meth:`pandas.Period.asfreq` with the given arguments
        to each :class:`~pandas.Period` in this {klass}.

        Parameters
        ----------
        freq : str
            A frequency.
        how : str {{'E', 'S'}}, default 'E'
            Whether the elements should be aligned to the end
            or start within pa period.

            * 'E', 'END', or 'FINISH' for end,
            * 'S', 'START', or 'BEGIN' for start.

            January 31st ('END') vs. January 1st ('START') for example.

        Returns
        -------
        {klass}
            The transformed {klass} with the new frequency.

        See Also
        --------
        {other}.asfreq: Convert each Period in a {other_name} to the given frequency.
        Period.asfreq : Convert a :class:`~pandas.Period` object to the given frequency.

        Examples
        --------
        >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A')
        >>> pidx
        PeriodIndex(['2010', '2011', '2012', '2013', '2014', '2015'],
        dtype='period[A-DEC]')

        >>> pidx.asfreq('M')
        PeriodIndex(['2010-12', '2011-12', '2012-12', '2013-12', '2014-12',
        '2015-12'], dtype='period[M]')

        >>> pidx.asfreq('M', how='S')
        PeriodIndex(['2010-01', '2011-01', '2012-01', '2013-01', '2014-01',
        '2015-01'], dtype='period[M]')
        """
        how = libperiod.validate_end_alias(how)

        freq = Period._maybe_convert_freq(freq)

        base1 = self.freq._period_dtype_code
        base2 = freq._period_dtype_code

        asi8 = self.asi8
        # self.freq.n can't be negative or 0
        end = how == "E"
        if end:
            ordinal = asi8 + self.freq.n - 1
        else:
            ordinal = asi8

        new_data = period_asfreq_arr(ordinal, base1, base2, end)

        if self._hasnans:
            new_data[self._isnan] = iNaT

        return type(self)(new_data, freq=freq)
Exemple #7
0
    def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None,
                periods=None, copy=False, name=None, tz=None, dtype=None,
                **kwargs):

        if periods is not None:
            if is_float(periods):
                periods = int(periods)
            elif not is_integer(periods):
                msg = 'periods must be a number, got {periods}'
                raise TypeError(msg.format(periods=periods))

        if name is None and hasattr(data, 'name'):
            name = data.name

        if dtype is not None:
            dtype = pandas_dtype(dtype)
            if not is_period_dtype(dtype):
                raise ValueError('dtype must be PeriodDtype')
            if freq is None:
                freq = dtype.freq
            elif freq != dtype.freq:
                msg = 'specified freq and dtype are different'
                raise IncompatibleFrequency(msg)

        # coerce freq to freq object, otherwise it can be coerced elementwise
        # which is slow
        if freq:
            freq = Period._maybe_convert_freq(freq)

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods,
                                                 freq, kwargs)
            return cls._from_ordinals(data, name=name, freq=freq)

        if isinstance(data, PeriodIndex):
            if freq is None or freq == data.freq:  # no freq change
                freq = data.freq
                data = data._values
            else:
                base1, _ = _gfc(data.freq)
                base2, _ = _gfc(freq)
                data = period.period_asfreq_arr(data._values,
                                                base1, base2, 1)
            return cls._simple_new(data, name=name, freq=freq)

        # not array / index
        if not isinstance(data, (np.ndarray, PeriodIndex,
                                 DatetimeIndex, Int64Index)):
            if is_scalar(data) or isinstance(data, Period):
                cls._scalar_data_error(data)

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data)

        # datetime other than period
        if is_datetime64_dtype(data.dtype):
            data = dt64arr_to_periodarr(data, freq, tz)
            return cls._from_ordinals(data, name=name, freq=freq)

        # check not floats
        if infer_dtype(data) == 'floating' and len(data) > 0:
            raise TypeError("PeriodIndex does not allow "
                            "floating point in construction")

        # anything else, likely an array of strings or periods
        data = _ensure_object(data)
        freq = freq or period.extract_freq(data)
        data = period.extract_ordinals(data, freq)
        return cls._from_ordinals(data, name=name, freq=freq)
Exemple #8
0
    def __new__(cls,
                data=None,
                ordinal=None,
                freq=None,
                start=None,
                end=None,
                periods=None,
                tz=None,
                dtype=None,
                copy=False,
                name=None,
                **fields):

        valid_field_set = {
            'year', 'month', 'day', 'quarter', 'hour', 'minute', 'second'
        }

        if not set(fields).issubset(valid_field_set):
            raise TypeError(
                '__new__() got an unexpected keyword argument {}'.format(
                    list(set(fields) - valid_field_set)[0]))

        periods = dtl.validate_periods(periods)

        if name is None and hasattr(data, 'name'):
            name = data.name

        freq = dtl.validate_dtype_freq(dtype, freq)

        # coerce freq to freq object, otherwise it can be coerced elementwise
        # which is slow
        if freq:
            freq = Period._maybe_convert_freq(freq)

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods, freq,
                                                 fields)
            return cls._simple_new(data, name=name, freq=freq)

        if isinstance(data, PeriodIndex):
            if freq is None or freq == data.freq:  # no freq change
                freq = data.freq
                data = data._ndarray_values
            else:
                base1, _ = _gfc(data.freq)
                base2, _ = _gfc(freq)
                data = period.period_asfreq_arr(data._ndarray_values, base1,
                                                base2, 1)
            return cls._simple_new(data, name=name, freq=freq)

        # not array / index
        if not isinstance(
                data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)):
            if is_scalar(data):
                cls._scalar_data_error(data)

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data)

        # datetime other than period
        if is_datetime64_dtype(data.dtype):
            data = dt64arr_to_periodarr(data, freq, tz)
            return cls._simple_new(data, name=name, freq=freq)

        # check not floats
        if infer_dtype(data) == 'floating' and len(data) > 0:
            raise TypeError("PeriodIndex does not allow "
                            "floating point in construction")

        # anything else, likely an array of strings or periods
        data = ensure_object(data)
        freq = freq or period.extract_freq(data)
        data = period.extract_ordinals(data, freq)
        return cls._simple_new(data, name=name, freq=freq)
Exemple #9
0
    def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None,
                periods=None, tz=None, dtype=None, copy=False, name=None,
                **fields):

        valid_field_set = {'year', 'month', 'day', 'quarter',
                           'hour', 'minute', 'second'}

        if not set(fields).issubset(valid_field_set):
            raise TypeError('__new__() got an unexpected keyword argument {}'.
                            format(list(set(fields) - valid_field_set)[0]))

        periods = dtl.validate_periods(periods)

        if name is None and hasattr(data, 'name'):
            name = data.name

        freq = dtl.validate_dtype_freq(dtype, freq)

        # coerce freq to freq object, otherwise it can be coerced elementwise
        # which is slow
        if freq:
            freq = Period._maybe_convert_freq(freq)

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods,
                                                 freq, fields)
            return cls._simple_new(data, name=name, freq=freq)

        if isinstance(data, PeriodIndex):
            if freq is None or freq == data.freq:  # no freq change
                freq = data.freq
                data = data._ndarray_values
            else:
                base1, _ = _gfc(data.freq)
                base2, _ = _gfc(freq)
                data = period.period_asfreq_arr(data._ndarray_values,
                                                base1, base2, 1)
            return cls._simple_new(data, name=name, freq=freq)

        # not array / index
        if not isinstance(data, (np.ndarray, PeriodIndex,
                                 DatetimeIndex, Int64Index)):
            if is_scalar(data):
                cls._scalar_data_error(data)

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data)

        # datetime other than period
        if is_datetime64_dtype(data.dtype):
            data = dt64arr_to_periodarr(data, freq, tz)
            return cls._simple_new(data, name=name, freq=freq)

        # check not floats
        if infer_dtype(data) == 'floating' and len(data) > 0:
            raise TypeError("PeriodIndex does not allow "
                            "floating point in construction")

        # anything else, likely an array of strings or periods
        data = ensure_object(data)
        freq = freq or period.extract_freq(data)
        data = period.extract_ordinals(data, freq)
        return cls._simple_new(data, name=name, freq=freq)