def asfreq(self, freq=None, how='E'): """ Convert the PeriodIndex to the specified frequency `freq`. Parameters ---------- freq : str a frequency how : str {'E', 'S'} 'E', 'END', or 'FINISH' for end, 'S', 'START', or 'BEGIN' for start. Whether the elements should be aligned to the end or start within pa period. January 31st ('END') vs. Janury 1st ('START') for example. Returns ------- new : PeriodIndex with the new frequency Examples -------- >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A') >>> pidx <class 'pandas.tseries.period.PeriodIndex'> [2010, ..., 2015] Length: 6, Freq: A-DEC >>> pidx.asfreq('M') <class 'pandas.tseries.period.PeriodIndex'> [2010-12, ..., 2015-12] Length: 6, Freq: M >>> pidx.asfreq('M', how='S') <class 'pandas.tseries.period.PeriodIndex'> [2010-01, ..., 2015-01] Length: 6, Freq: M """ how = _validate_end_alias(how) freq = Period._maybe_convert_freq(freq) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) asi8 = self.asi8 # mult1 can't be negative or 0 end = how == 'E' if end: ordinal = asi8 + mult1 - 1 else: ordinal = asi8 new_data = period.period_asfreq_arr(ordinal, base1, base2, end) if self.hasnans: new_data[self._isnan] = tslib.iNaT return self._simple_new(new_data, self.name, freq=freq)
def to_timestamp(self, freq=None, how='start'): """ Cast to DatetimeIndex Parameters ---------- freq : string or DateOffset, default 'D' for week or longer, 'S' otherwise Target frequency how : {'s', 'e', 'start', 'end'} Returns ------- DatetimeIndex """ how = _validate_end_alias(how) if freq is None: base, mult = _gfc(self.freq) freq = frequencies.get_to_timestamp_base(base) else: freq = Period._maybe_convert_freq(freq) base, mult = _gfc(freq) new_data = self.asfreq(freq, how) new_data = period.periodarr_to_dt64arr(new_data._values, base) return DatetimeIndex(new_data, freq='infer', name=self.name)
def to_timestamp(self, freq=None, how='start'): """ Cast to DatetimeIndex Parameters ---------- freq : string or DateOffset, default 'D' for week or longer, 'S' otherwise Target frequency how : {'s', 'e', 'start', 'end'} Returns ------- DatetimeIndex """ how = _validate_end_alias(how) if freq is None: base, mult = _gfc(self.freq) freq = frequencies.get_to_timestamp_base(base) else: freq = Period._maybe_convert_freq(freq) base, mult = _gfc(freq) new_data = self.asfreq(freq, how) new_data = period.periodarr_to_dt64arr(new_data.values, base) return DatetimeIndex(new_data, freq='infer', name=self.name)
def asfreq(self, freq=None, how='E'): """ Convert the PeriodIndex to the specified frequency `freq`. Parameters ---------- freq : str a frequency how : str {'E', 'S'} 'E', 'END', or 'FINISH' for end, 'S', 'START', or 'BEGIN' for start. Whether the elements should be aligned to the end or start within pa period. January 31st ('END') vs. Janury 1st ('START') for example. Returns ------- new : PeriodIndex with the new frequency Examples -------- >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A') >>> pidx <class 'pandas.tseries.period.PeriodIndex'> [2010, ..., 2015] Length: 6, Freq: A-DEC >>> pidx.asfreq('M') <class 'pandas.tseries.period.PeriodIndex'> [2010-12, ..., 2015-12] Length: 6, Freq: M >>> pidx.asfreq('M', how='S') <class 'pandas.tseries.period.PeriodIndex'> [2010-01, ..., 2015-01] Length: 6, Freq: M """ how = _validate_end_alias(how) freq = frequencies.get_standard_freq(freq) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) if mult2 != 1: raise ValueError('Only mult == 1 supported') end = how == 'E' new_data = period.period_asfreq_arr(self.values, base1, base2, end) return self._simple_new(new_data, self.name, freq=freq)
def asfreq(self, freq=None, how='E'): how = _validate_end_alias(how) freq = frequencies.get_standard_freq(freq) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) if mult2 != 1: raise ValueError('Only mult == 1 supported') end = how == 'E' new_data = period.period_asfreq_arr(self.values, base1, base2, end) return self._simple_new(new_data, self.name, freq=freq)