def test_metadata_propagation_indiv(self, monkeypatch):
        # check that the metadata matches up on the resulting ops

        ser = Series(range(3), range(3))
        ser.name = "foo"
        ser2 = Series(range(3), range(3))
        ser2.name = "bar"

        result = ser.T
        tm.assert_metadata_equivalent(ser, result)

        def finalize(self, other, method=None, **kwargs):
            for name in self._metadata:
                if method == "concat" and name == "filename":
                    value = "+".join([
                        getattr(obj, name) for obj in other.objs
                        if getattr(obj, name, None)
                    ])
                    object.__setattr__(self, name, value)
                else:
                    object.__setattr__(self, name, getattr(other, name, None))

            return self

        with monkeypatch.context() as m:
            m.setattr(Series, "_metadata", ["name", "filename"])
            m.setattr(Series, "__finalize__", finalize)

            ser.filename = "foo"
            ser2.filename = "bar"

            result = pd.concat([ser, ser2])
            assert result.filename == "foo+bar"
            assert result.name is None
Exemple #2
0
 def test_metadata_propagation_indiv_resample(self):
     # resample
     df = DataFrame(
         np.random.randn(1000, 2),
         index=date_range("20130101", periods=1000, freq="s"),
     )
     result = df.resample("1T")
     tm.assert_metadata_equivalent(df, result)
 def test_metadata_propagation_indiv_groupby(self):
     # groupby
     df = DataFrame({
         "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
         "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
         "C":
         np.random.randn(8),
         "D":
         np.random.randn(8),
     })
     result = df.groupby("A").sum()
     tm.assert_metadata_equivalent(df, result)
Exemple #4
0
 def test_metadata_propagation_indiv_groupby(self):
     # groupby
     df = DataFrame({
         "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
         "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
         "C":
         np.random.randn(8),
         "D":
         np.random.randn(8),
     })
     msg = "The default value of numeric_only"
     with tm.assert_produces_warning(FutureWarning, match=msg):
         result = df.groupby("A").sum()
     tm.assert_metadata_equivalent(df, result)
    def test_metadata_propagation_indiv_resample(self):
        # resample
        ts = Series(
            np.random.rand(1000),
            index=date_range("20130101", periods=1000, freq="s"),
            name="foo",
        )
        result = ts.resample("1T").mean()
        tm.assert_metadata_equivalent(ts, result)

        result = ts.resample("1T").min()
        tm.assert_metadata_equivalent(ts, result)

        result = ts.resample("1T").apply(lambda x: x.sum())
        tm.assert_metadata_equivalent(ts, result)
Exemple #6
0
    def test_metadata_propagation(self, frame_or_series):
        # check that the metadata matches up on the resulting ops

        o = construct(frame_or_series, shape=3)
        o.name = "foo"
        o2 = construct(frame_or_series, shape=3)
        o2.name = "bar"

        # ----------
        # preserving
        # ----------

        # simple ops with scalars
        for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
            result = getattr(o, op)(1)
            tm.assert_metadata_equivalent(o, result)

        # ops with like
        for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
            result = getattr(o, op)(o)
            tm.assert_metadata_equivalent(o, result)

        # simple boolean
        for op in ["__eq__", "__le__", "__ge__"]:
            v1 = getattr(o, op)(o)
            tm.assert_metadata_equivalent(o, v1)
            tm.assert_metadata_equivalent(o, v1 & v1)
            tm.assert_metadata_equivalent(o, v1 | v1)

        # combine_first
        result = o.combine_first(o2)
        tm.assert_metadata_equivalent(o, result)

        # ---------------------------
        # non-preserving (by default)
        # ---------------------------

        # add non-like
        result = o + o2
        tm.assert_metadata_equivalent(result)

        # simple boolean
        for op in ["__eq__", "__le__", "__ge__"]:

            # this is a name matching op
            v1 = getattr(o, op)(o)
            v2 = getattr(o, op)(o2)
            tm.assert_metadata_equivalent(v2)
            tm.assert_metadata_equivalent(v1 & v2)
            tm.assert_metadata_equivalent(v1 | v2)