Exemple #1
0
 def test_getitem_arraylike_mask(self):
     arr = SparseArray([0, 1, 2])
     result = arr[[True, False, True]]
     expected = SparseArray([0, 2])
     tm.assert_sp_array_equal(result, expected)
Exemple #2
0
 def _check_roundtrip(obj):
     unpickled = tm.round_trip_pickle(obj)
     tm.assert_sp_array_equal(unpickled, obj)
Exemple #3
0
 def test_constructor_sparse_dtype(self):
     result = SparseArray([1, 0, 0, 1], dtype=SparseDtype("int64", -1))
     expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64)
     tm.assert_sp_array_equal(result, expected)
     assert result.sp_values.dtype == np.dtype("int64")
Exemple #4
0
 def test_constructor_sparse_dtype_str(self):
     result = SparseArray([1, 0, 0, 1], dtype="Sparse[int32]")
     expected = SparseArray([1, 0, 0, 1], dtype=np.int32)
     tm.assert_sp_array_equal(result, expected)
     assert result.sp_values.dtype == np.dtype("int32")
Exemple #5
0
def test_invert(fill_value):
    arr = np.array([True, False, False, True])
    sparray = SparseArray(arr, fill_value=fill_value)
    result = ~sparray
    expected = SparseArray(~arr, fill_value=not fill_value)
    tm.assert_sp_array_equal(result, expected)
Exemple #6
0
 def test_astype_more(self, array, dtype, expected):
     result = array.astype(dtype)
     tm.assert_sp_array_equal(result, expected)
Exemple #7
0
 def test_take_all_empty(self):
     a = pd.array([0, 0], dtype=SparseDtype("int64"))
     result = a.take([0, 1], allow_fill=True, fill_value=np.nan)
     tm.assert_sp_array_equal(a, result)
Exemple #8
0
def test_unique_all_sparse():
    # https://github.com/pandas-dev/pandas/issues/23168
    arr = SparseArray([0, 0])
    result = arr.unique()
    expected = SparseArray([0])
    tm.assert_sp_array_equal(result, expected)
def test_sparray_inplace():
    sparray = SparseArray([0, 2, 0, 0])
    ndarray = np.array([0, 1, 2, 3])
    sparray += ndarray
    expected = SparseArray([0, 3, 2, 3], fill_value=0)
    tm.assert_sp_array_equal(sparray, expected)
Exemple #10
0
    def test_take(self):
        exp = SparseArray(np.take(self.arr_data, [2, 3]))
        tm.assert_sp_array_equal(self.arr.take([2, 3]), exp)

        exp = SparseArray(np.take(self.arr_data, [0, 1, 2]))
        tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp)
def test_ufuncs(ufunc, arr):
    result = ufunc(arr)
    fill_value = ufunc(arr.fill_value)
    expected = SparseArray(ufunc(np.asarray(arr)), fill_value=fill_value)
    tm.assert_sp_array_equal(result, expected)
def test_with_list(op):
    arr = SparseArray([0, 1], fill_value=0)
    result = op(arr, [0, 1])
    expected = op(arr, SparseArray([0, 1]))
    tm.assert_sp_array_equal(result, expected)
Exemple #13
0
def test_unary_op(op, fill_value):
    arr = np.array([0, 1, np.nan, 2])
    sparray = SparseArray(arr, fill_value=fill_value)
    result = op(sparray)
    expected = SparseArray(op(arr), fill_value=op(fill_value))
    tm.assert_sp_array_equal(result, expected)
Exemple #14
0
    def test_fillna(self):
        s = SparseArray([1, np.nan, np.nan, 3, np.nan])
        res = s.fillna(-1)
        exp = SparseArray([1, -1, -1, 3, -1], fill_value=-1, dtype=np.float64)
        tm.assert_sp_array_equal(res, exp)

        s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0)
        res = s.fillna(-1)
        exp = SparseArray([1, -1, -1, 3, -1], fill_value=0, dtype=np.float64)
        tm.assert_sp_array_equal(res, exp)

        s = SparseArray([1, np.nan, 0, 3, 0])
        res = s.fillna(-1)
        exp = SparseArray([1, -1, 0, 3, 0], fill_value=-1, dtype=np.float64)
        tm.assert_sp_array_equal(res, exp)

        s = SparseArray([1, np.nan, 0, 3, 0], fill_value=0)
        res = s.fillna(-1)
        exp = SparseArray([1, -1, 0, 3, 0], fill_value=0, dtype=np.float64)
        tm.assert_sp_array_equal(res, exp)

        s = SparseArray([np.nan, np.nan, np.nan, np.nan])
        res = s.fillna(-1)
        exp = SparseArray([-1, -1, -1, -1], fill_value=-1, dtype=np.float64)
        tm.assert_sp_array_equal(res, exp)

        s = SparseArray([np.nan, np.nan, np.nan, np.nan], fill_value=0)
        res = s.fillna(-1)
        exp = SparseArray([-1, -1, -1, -1], fill_value=0, dtype=np.float64)
        tm.assert_sp_array_equal(res, exp)

        # float dtype's fill_value is np.nan, replaced by -1
        s = SparseArray([0.0, 0.0, 0.0, 0.0])
        res = s.fillna(-1)
        exp = SparseArray([0.0, 0.0, 0.0, 0.0], fill_value=-1)
        tm.assert_sp_array_equal(res, exp)

        # int dtype shouldn't have missing. No changes.
        s = SparseArray([0, 0, 0, 0])
        assert s.dtype == SparseDtype(np.int64)
        assert s.fill_value == 0
        res = s.fillna(-1)
        tm.assert_sp_array_equal(res, s)

        s = SparseArray([0, 0, 0, 0], fill_value=0)
        assert s.dtype == SparseDtype(np.int64)
        assert s.fill_value == 0
        res = s.fillna(-1)
        exp = SparseArray([0, 0, 0, 0], fill_value=0)
        tm.assert_sp_array_equal(res, exp)

        # fill_value can be nan if there is no missing hole.
        # only fill_value will be changed
        s = SparseArray([0, 0, 0, 0], fill_value=np.nan)
        assert s.dtype == SparseDtype(np.int64, fill_value=np.nan)
        assert np.isnan(s.fill_value)
        res = s.fillna(-1)
        exp = SparseArray([0, 0, 0, 0], fill_value=-1)
        tm.assert_sp_array_equal(res, exp)
Exemple #15
0
    def test_take_negative(self):
        exp = SparseArray(np.take(self.arr_data, [-1]))
        tm.assert_sp_array_equal(self.arr.take([-1]), exp)

        exp = SparseArray(np.take(self.arr_data, [-4, -3, -2]))
        tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp)
Exemple #16
0
    def test_ufunc(self):
        # GH 13853 make sure ufunc is applied to fill_value
        sparse = SparseArray([1, np.nan, 2, np.nan, -2])
        result = SparseArray([1, np.nan, 2, np.nan, 2])
        tm.assert_sp_array_equal(abs(sparse), result)
        tm.assert_sp_array_equal(np.abs(sparse), result)

        sparse = SparseArray([1, -1, 2, -2], fill_value=1)
        result = SparseArray([1, 2, 2],
                             sparse_index=sparse.sp_index,
                             fill_value=1)
        tm.assert_sp_array_equal(abs(sparse), result)
        tm.assert_sp_array_equal(np.abs(sparse), result)

        sparse = SparseArray([1, -1, 2, -2], fill_value=-1)
        result = SparseArray([1, 2, 2],
                             sparse_index=sparse.sp_index,
                             fill_value=1)
        tm.assert_sp_array_equal(abs(sparse), result)
        tm.assert_sp_array_equal(np.abs(sparse), result)

        sparse = SparseArray([1, np.nan, 2, np.nan, -2])
        result = SparseArray(np.sin([1, np.nan, 2, np.nan, -2]))
        tm.assert_sp_array_equal(np.sin(sparse), result)

        sparse = SparseArray([1, -1, 2, -2], fill_value=1)
        result = SparseArray(np.sin([1, -1, 2, -2]), fill_value=np.sin(1))
        tm.assert_sp_array_equal(np.sin(sparse), result)

        sparse = SparseArray([1, -1, 0, -2], fill_value=0)
        result = SparseArray(np.sin([1, -1, 0, -2]), fill_value=np.sin(0))
        tm.assert_sp_array_equal(np.sin(sparse), result)
Exemple #17
0
 def test_constructor_dtype_str(self):
     result = SparseArray([1, 2, 3], dtype="int")
     expected = SparseArray([1, 2, 3], dtype=int)
     tm.assert_sp_array_equal(result, expected)
Exemple #18
0
def test_map_missing():
    arr = SparseArray([0, 1, 2])
    expected = SparseArray([10, 11, None], fill_value=10)

    result = arr.map({0: 10, 1: 11})
    tm.assert_sp_array_equal(result, expected)
Exemple #19
0
 def test_pickle(self, fix, request):
     obj = request.getfixturevalue(fix)
     unpickled = tm.round_trip_pickle(obj)
     tm.assert_sp_array_equal(unpickled, obj)