def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: for op, op_str in [('add', '+'), ('sub', '-'), ('mul', '*'), ('div', '/'), ('pow', '**')]: op = getattr(operator, op, None) if op is not None: result = expr._can_use_numexpr(op, op_str, f, f, 'evaluate') self.assert_(result == (not f._is_mixed_type)) result = expr.evaluate(op, op_str, f, f, use_numexpr=True) expected = expr.evaluate(op, op_str, f, f, use_numexpr=False) assert_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f2, f2, 'evaluate') self.assert_(result == False)
def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: f11 = f f12 = f + 1 f21 = f2 f22 = f2 + 1 for op, op_str in [('gt', '>'), ('lt', '<'), ('ge', '>='), ('le', '<='), ('eq', '=='), ('ne', '!=')]: op = getattr(operator, op) result = expr._can_use_numexpr(op, op_str, f11, f12, 'evaluate') self.assert_(result == (not f11._is_mixed_type)) result = expr.evaluate(op, op_str, f11, f12, use_numexpr=True) expected = expr.evaluate(op, op_str, f11, f12, use_numexpr=False) assert_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f21, f22, 'evaluate') self.assert_(result == False)
def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: for op, op_str in [("add", "+"), ("sub", "-"), ("mul", "*"), ("div", "/"), ("pow", "**")]: op = getattr(operator, op) result = expr._can_use_numexpr(op, op_str, f, f, "evaluate") self.assert_(result == (not f._is_mixed_type)) result = expr.evaluate(op, op_str, f, f, use_numexpr=True) expected = expr.evaluate(op, op_str, f, f, use_numexpr=False) assert_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f2, f2, "evaluate") self.assert_(result == False)
def testit(): for f, f2 in [ (self.frame, self.frame2), (self.mixed, self.mixed2) ]: for op, op_str in [('add','+'),('sub','-'),('mul','*'),('div','/'),('pow','**')]: op = getattr(operator,op) result = expr._can_use_numexpr(op, op_str, f, f) self.assert_(result == (not f._is_mixed_type)) result = expr.evaluate(op, op_str, f, f, use_numexpr=True) expected = expr.evaluate(op, op_str, f, f, use_numexpr=False) assert_array_equal(result,expected.values) result = expr._can_use_numexpr(op, op_str, f2, f2) self.assert_(result == False)
def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: f11 = f f12 = f + 1 f21 = f2 f22 = f2 + 1 for op, op_str in [("gt", ">"), ("lt", "<"), ("ge", ">="), ("le", "<="), ("eq", "=="), ("ne", "!=")]: op = getattr(operator, op) result = expr._can_use_numexpr(op, op_str, f11, f12, "evaluate") self.assert_(result == (not f11._is_mixed_type)) result = expr.evaluate(op, op_str, f11, f12, use_numexpr=True) expected = expr.evaluate(op, op_str, f11, f12, use_numexpr=False) assert_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f21, f22, "evaluate") self.assert_(result == False)
def testit(): for f, f2 in [ (self.frame, self.frame2), (self.mixed, self.mixed2) ]: f11 = f f12 = f + 1 f21 = f2 f22 = f2 + 1 for op, op_str in [('gt','>'),('lt','<'),('ge','>='),('le','<='),('eq','=='),('ne','!=')]: op = getattr(operator,op) result = expr._can_use_numexpr(op, op_str, f11, f12, 'evaluate') self.assert_(result == (not f11._is_mixed_type)) result = expr.evaluate(op, op_str, f11, f12, use_numexpr=True) expected = expr.evaluate(op, op_str, f11, f12, use_numexpr=False) assert_array_equal(result,expected.values) result = expr._can_use_numexpr(op, op_str, f21, f22, 'evaluate') self.assert_(result == False)
nr_runs=5, nr_init=9, max_iter=30, delta=0.1, labels=None, entropy_cutoff=None) classes = m4.classify(dat) m4.shortInitEM(dat, 5, 5, 5, 0.1) m4.EM(seq3, 20, 0.1) print "####Finish\n", m4 dat.printClustering(2, pred) evaluate(pred, true) # ----------------------------- Example 4 ----------------------------- m5 = MixtureModel(1, [1.0], [NormalDistribution(3.0, 2.5)]) seq4 = m5.sample(1800) #print "var = ", variance(seq4) m6 = MixtureModel(1, [1.0], [NormalDistribution(-1.5, 2.5)]) #m6.EM(seq4,1,5) #print m6 #seq5 = numarray.zeros(900,numarray.Float) #for i in range(900):
dat = DataSet() dat.fromArray(seq3) print "vorher ------\n", m4 pred = m4.cluster(dat, nr_runs=5, nr_init=9, max_iter=30, delta=0.1, labels=None, entropy_cutoff=None) classes = m4.classify(dat) m4.shortInitEM(dat, 5, 5, 5, 0.1) m4.EM(seq3, 20, 0.1) print "####Finish\n", m4 dat.printClustering(2, pred) evaluate(pred, true) # ----------------------------- Example 4 ----------------------------- m5 = MixtureModel(1, [1.0], [NormalDistribution(3.0, 2.5)]) seq4 = m5.sample(1800) # print "var = ", variance(seq4) m6 = MixtureModel(1, [1.0], [NormalDistribution(-1.5, 2.5)]) # m6.EM(seq4,1,5) # print m6 # seq5 = numarray.zeros(900,numarray.Float)