def test_one_level_deep_flattens(self): data = dict(flat1=1, dict1=dict(c=1, d=2)) result = nested_to_record(data) expected = {'dict1.c': 1, 'dict1.d': 2, 'flat1': 1} self.assertEqual(result, expected)
def test_flat_stays_flat(self): recs = [dict(flat1=1, flat2=2), dict(flat1=3, flat2=4), ] result = nested_to_record(recs) expected = recs self.assertEqual(result, expected)
def test_flat_stays_flat(self): recs = [dict(flat1=1,flat2=2), dict(flat1=3,flat2=4), ] result = nested_to_record(recs) expected = recs self.assertEqual(result, expected)
def json_to_norm_dict(s, c): logging.info(str(c)) normalized_dict = pjson.nested_to_record(json.loads(s)) return { key.replace('.', '_'): value for key, value in normalized_dict.iteritems() if key in json_data_columns.WANTED_COLUMNS_STOCKTWITS }
def test_one_level_deep_flattens(self): data = dict(flat1=1, dict1=dict(c=1,d=2)) result = nested_to_record(data) expected = {'dict1.c': 1, 'dict1.d': 2, 'flat1': 1} self.assertEqual(result,expected)
def test_nested_flattens(self): data = dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2)) result = nested_to_record(data) expected = {'dict1.c': 1, 'dict1.d': 2, 'flat1': 1, 'nested.d': 2, 'nested.e.c': 1, 'nested.e.d': 2} self.assertEqual(result, expected)
def test_nested_flattens(self): data = dict(flat1=1, dict1=dict(c=1,d=2), nested=dict(e=dict(c=1,d=2), d=2)) result = nested_to_record(data) expected = {'dict1.c': 1, 'dict1.d': 2, 'flat1': 1, 'nested.d': 2, 'nested.e.c': 1, 'nested.e.d': 2} self.assertEqual(result,expected)
def read_nested_write_flat(infile, outfile): with open(infile, 'r') as infile: with open(outfile, 'a') as outfile: for record in read_jsonl_stream(infile): dump_jsonl_stream(nested_to_record(record), outfile) print "saved records to {}".format(outfile.name)