def evaluate(self, x, y, verbose=2): metrics_value = self.model.evaluate(x=x, y=y, verbose=verbose) metrics_names = self.model.metrics_names if isiterable(metrics_value): return list(zip(metrics_names, metrics_value)) else: return metrics_names[0], metrics_value
def evaluate(self, x, y, n_cls, verbose=2): in_1, in_2, out = self._get_batch(x, y, n_cls, 128 * 100) metrics_value = self.model.evaluate([in_1, in_2], out, verbose=verbose) metrics_names = self.model.metrics_names if isiterable(metrics_value): return list(zip(metrics_names, metrics_value)) else: return metrics_names[0], metrics_value
def _print_evaluate(self, data, scalar_values): metrics_names = self.model.metrics_names if isiterable(scalar_values): for item in zip(metrics_names, scalar_values): print(data + ': ' + '\t'.join((item[0], str(item[1])))) else: print(data + ': ' + '\t'.join((metrics_names[0], str(scalar_values))))
def evaluate(self, x, y, n_cls): anchor, positive, negetive = self._get_batch( x, y, n_cls, 128*100) metrics_value = self.model.evaluate([anchor, positive, negetive], anchor) metrics_names = self.model.metrics_names if isiterable(metrics_value): return list(zip(metrics_names, metrics_value)) else: return metrics_names[0], metrics_value