def test_kurt(self):
        from scipy.stats import kurtosis

        string_series = tm.makeStringSeries().rename('series')

        alt = lambda x: kurtosis(x, bias=False)
        self._check_stat_op('kurt', alt, string_series)

        index = pd.MultiIndex(
            levels=[['bar'], ['one', 'two', 'three'], [0, 1]],
            codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]
        )
        s = Series(np.random.randn(6), index=index)
        tm.assert_almost_equal(s.kurt(), s.kurt(level=0)['bar'])

        # test corner cases, kurt() returns NaN unless there's at least 4
        # values
        min_N = 4
        for i in range(1, min_N + 1):
            s = Series(np.ones(i))
            df = DataFrame(np.ones((i, i)))
            if i < min_N:
                assert np.isnan(s.kurt())
                assert np.isnan(df.kurt()).all()
            else:
                assert 0 == s.kurt()
                assert (df.kurt() == 0).all()
    def test_var_std(self):
        string_series = tm.makeStringSeries().rename('series')
        datetime_series = tm.makeTimeSeries().rename('ts')

        alt = lambda x: np.std(x, ddof=1)
        self._check_stat_op('std', alt, string_series)

        alt = lambda x: np.var(x, ddof=1)
        self._check_stat_op('var', alt, string_series)

        result = datetime_series.std(ddof=4)
        expected = np.std(datetime_series.values, ddof=4)
        tm.assert_almost_equal(result, expected)

        result = datetime_series.var(ddof=4)
        expected = np.var(datetime_series.values, ddof=4)
        tm.assert_almost_equal(result, expected)

        # 1 - element series with ddof=1
        s = datetime_series.iloc[[0]]
        result = s.var(ddof=1)
        assert pd.isna(result)

        result = s.std(ddof=1)
        assert pd.isna(result)
Exemple #3
0
    def test_isnull(self):
        self.assertFalse(isnull(1.))
        self.assertTrue(isnull(None))
        self.assertTrue(isnull(np.NaN))
        self.assertTrue(float('nan'))
        self.assertFalse(isnull(np.inf))
        self.assertFalse(isnull(-np.inf))

        # series
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert isinstance(isnull(s), Series)

        # frame
        for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
                   tm.makeMixedDataFrame()]:
            result = isnull(df)
            expected = df.apply(isnull)
            tm.assert_frame_equal(result, expected)

        # panel
        with catch_warnings(record=True):
            for p in [tm.makePanel(), tm.makePeriodPanel(),
                      tm.add_nans(tm.makePanel())]:
                result = isnull(p)
                expected = p.apply(isnull)
                tm.assert_panel_equal(result, expected)

        # panel 4d
        with catch_warnings(record=True):
            for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]:
                result = isnull(p)
                expected = p.apply(isnull)
                tm.assert_panel4d_equal(result, expected)
    def test_median(self):
        string_series = tm.makeStringSeries().rename('series')
        self._check_stat_op('median', np.median, string_series)

        # test with integers, test failure
        int_ts = Series(np.ones(10, dtype=int), index=lrange(10))
        tm.assert_almost_equal(np.median(int_ts), int_ts.median())
Exemple #5
0
    def test_isna_isnull(self, isna_f):
        assert not isna_f(1.)
        assert isna_f(None)
        assert isna_f(np.NaN)
        assert float('nan')
        assert not isna_f(np.inf)
        assert not isna_f(-np.inf)

        # series
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert isinstance(isna_f(s), Series)

        # frame
        for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
                   tm.makeMixedDataFrame()]:
            result = isna_f(df)
            expected = df.apply(isna_f)
            tm.assert_frame_equal(result, expected)

        # panel
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel(), tm.makePeriodPanel(),
                      tm.add_nans(tm.makePanel())]:
                result = isna_f(p)
                expected = p.apply(isna_f)
                tm.assert_panel_equal(result, expected)
Exemple #6
0
    def test_idxmin(self):
        # test idxmin
        # _check_stat_op approach can not be used here because of isna check.
        string_series = tm.makeStringSeries().rename('series')

        # add some NaNs
        string_series[5:15] = np.NaN

        # skipna or no
        assert string_series[string_series.idxmin()] == string_series.min()
        assert pd.isna(string_series.idxmin(skipna=False))

        # no NaNs
        nona = string_series.dropna()
        assert nona[nona.idxmin()] == nona.min()
        assert (nona.index.values.tolist().index(nona.idxmin()) ==
                nona.values.argmin())

        # all NaNs
        allna = string_series * np.nan
        assert pd.isna(allna.idxmin())

        # datetime64[ns]
        s = Series(pd.date_range('20130102', periods=6))
        result = s.idxmin()
        assert result == 0

        s[0] = np.nan
        result = s.idxmin()
        assert result == 1
Exemple #7
0
def string_series():
    """
    Fixture for Series of floats with Index of unique strings
    """
    s = tm.makeStringSeries()
    s.name = 'series'
    return s
Exemple #8
0
 def test_len_keys(self):
     self.store['a'] = tm.makeTimeSeries()
     self.store['b'] = tm.makeStringSeries()
     self.store['c'] = tm.makeDataFrame()
     self.store['d'] = tm.makePanel()
     self.assertEquals(len(self.store), 4)
     self.assert_(set(self.store.keys()) == set(['a', 'b', 'c', 'd']))
Exemple #9
0
 def test_transpose(self):
     for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
               tm.makeObjectSeries()]:
         # calls implementation in pandas/core/base.py
         tm.assert_series_equal(s.transpose(), s)
     for df in [tm.makeTimeDataFrame()]:
         tm.assert_frame_equal(df.transpose().transpose(), df)
Exemple #10
0
    def setUp(self):
        super(TestSeries, self).setUp()

        self.d = {}

        s = tm.makeStringSeries()
        s.name = 'string'
        self.d['string'] = s

        s = tm.makeObjectSeries()
        s.name = 'object'
        self.d['object'] = s

        s = Series(tslib.iNaT, dtype='M8[ns]', index=range(5))
        self.d['date'] = s

        data = {
            'A': [0., 1., 2., 3., np.nan],
            'B': [0, 1, 0, 1, 0],
            'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'],
            'D': date_range('1/1/2009', periods=5),
            'E': [0., 1, Timestamp('20100101'), 'foo', 2.],
        }

        self.d['float'] = Series(data['A'])
        self.d['int'] = Series(data['B'])
        self.d['mixed'] = Series(data['E'])
Exemple #11
0
def test_notnull():
    assert notnull(1.)
    assert not notnull(None)
    assert not notnull(np.NaN)

    with cf.option_context("mode.use_inf_as_null", False):
        assert notnull(np.inf)
        assert notnull(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notnull(arr)
        assert result.all()

    with cf.option_context("mode.use_inf_as_null", True):
        assert not notnull(np.inf)
        assert not notnull(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notnull(arr)
        assert result.sum() == 2

    with cf.option_context("mode.use_inf_as_null", False):
        for s in [tm.makeFloatSeries(),tm.makeStringSeries(),
                  tm.makeObjectSeries(),tm.makeTimeSeries(),tm.makePeriodSeries()]:
            assert(isinstance(isnull(s), Series))
Exemple #12
0
    def test_squeeze(self):
        # noop
        for s in [ tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries() ]:
            tm.assert_series_equal(s.squeeze(),s)
        for df in [ tm.makeTimeDataFrame() ]:
            tm.assert_frame_equal(df.squeeze(),df)
        for p in [ tm.makePanel() ]:
            tm.assert_panel_equal(p.squeeze(),p)
        for p4d in [ tm.makePanel4D() ]:
            tm.assert_panel4d_equal(p4d.squeeze(),p4d)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(),df['A'])

        p = tm.makePanel().reindex(items=['ItemA'])
        tm.assert_frame_equal(p.squeeze(),p['ItemA'])

        p = tm.makePanel().reindex(items=['ItemA'],minor_axis=['A'])
        tm.assert_series_equal(p.squeeze(),p.ix['ItemA',:,'A'])

        p4d = tm.makePanel4D().reindex(labels=['label1'])
        tm.assert_panel_equal(p4d.squeeze(),p4d['label1'])

        p4d = tm.makePanel4D().reindex(labels=['label1'],items=['ItemA'])
        tm.assert_frame_equal(p4d.squeeze(),p4d.ix['label1','ItemA'])
Exemple #13
0
def test_isnull():
    assert not isnull(1.)
    assert isnull(None)
    assert isnull(np.NaN)
    assert not isnull(np.inf)
    assert not isnull(-np.inf)

    # series
    for s in [tm.makeFloatSeries(),tm.makeStringSeries(),
              tm.makeObjectSeries(),tm.makeTimeSeries(),tm.makePeriodSeries()]:
        assert(isinstance(isnull(s), Series))

    # frame
    for df in [tm.makeTimeDataFrame(),tm.makePeriodFrame(),tm.makeMixedDataFrame()]:
        result = isnull(df)
        expected = df.apply(isnull)
        tm.assert_frame_equal(result, expected)

    # panel
    for p in [ tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel()) ]:
        result = isnull(p)
        expected = p.apply(isnull)
        tm.assert_panel_equal(result, expected)

    # panel 4d
    for p in [ tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D()) ]:
        result = isnull(p)
        expected = p.apply(isnull)
        tm.assert_panel4d_equal(result, expected)
Exemple #14
0
 def test_repr(self):
     repr(self.store)
     self.store['a'] = tm.makeTimeSeries()
     self.store['b'] = tm.makeStringSeries()
     self.store['c'] = tm.makeDataFrame()
     self.store['d'] = tm.makePanel()
     repr(self.store)
Exemple #15
0
    def test_squeeze(self):
        # noop
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name='five')
        empty_frame = DataFrame([empty_series])
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            empty_panel = Panel({'six': empty_frame})

        [tm.assert_series_equal(empty_series, higher_dim.squeeze())
         for higher_dim in [empty_series, empty_frame, empty_panel]]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis='index'), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis='columns'), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        pytest.raises(ValueError, df.squeeze, axis=2)
        pytest.raises(ValueError, df.squeeze, axis='x')

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Exemple #16
0
    def test_take(self):
        indices = [1, 5, -2, 6, 3, -1]
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            out = s.take(indices)
            expected = Series(data=s.values.take(indices),
                              index=s.index.take(indices), dtype=s.dtype)
            tm.assert_series_equal(out, expected)
        for df in [tm.makeTimeDataFrame()]:
            out = df.take(indices)
            expected = DataFrame(data=df.values.take(indices, axis=0),
                                 index=df.index.take(indices),
                                 columns=df.columns)
            tm.assert_frame_equal(out, expected)

        indices = [-3, 2, 0, 1]
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel()]:
                out = p.take(indices)
                expected = Panel(data=p.values.take(indices, axis=0),
                                 items=p.items.take(indices),
                                 major_axis=p.major_axis,
                                 minor_axis=p.minor_axis)
                tm.assert_panel_equal(out, expected)
Exemple #17
0
    def setUp(self):
        super(TestSeries, self).setUp()

        self.d = {}

        s = tm.makeStringSeries()
        s.name = "string"
        self.d["string"] = s

        s = tm.makeObjectSeries()
        s.name = "object"
        self.d["object"] = s

        s = Series(tslib.iNaT, dtype="M8[ns]", index=range(5))
        self.d["date"] = s

        data = {
            "A": [0.0, 1.0, 2.0, 3.0, np.nan],
            "B": [0, 1, 0, 1, 0],
            "C": ["foo1", "foo2", "foo3", "foo4", "foo5"],
            "D": date_range("1/1/2009", periods=5),
            "E": [0.0, 1, Timestamp("20100101"), "foo", 2.0],
        }

        self.d["float"] = Series(data["A"])
        self.d["int"] = Series(data["B"])
        self.d["mixed"] = Series(data["E"])
 def test_keys(self):
     self.store['a'] = tm.makeTimeSeries()
     self.store['b'] = tm.makeStringSeries()
     self.store['c'] = tm.makeDataFrame()
     self.store['d'] = tm.makePanel()
     self.store['foo/bar'] = tm.makePanel()
     self.assertEquals(len(self.store), 5)
     self.assert_(set(self.store.keys()) == set(['/a', '/b', '/c', '/d', '/foo/bar']))
Exemple #19
0
    def setUp(self):
        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.iseries = tm.makePeriodSeries()
        self.iseries.name = 'iseries'
Exemple #20
0
    def setUp(self):
        self.ts = tm.makeTimeSeries()
        self.ts.name = "ts"

        self.series = tm.makeStringSeries()
        self.series.name = "series"

        self.iseries = tm.makePeriodSeries()
        self.iseries.name = "iseries"
 def test_repr(self):
     repr(self.store)
     self.store['a'] = tm.makeTimeSeries()
     self.store['b'] = tm.makeStringSeries()
     self.store['c'] = tm.makeDataFrame()
     self.store['d'] = tm.makePanel()
     self.store['foo/bar'] = tm.makePanel()
     self.store.append('e', tm.makePanel())
     repr(self.store)
     str(self.store)
Exemple #22
0
    def test_squeeze(self):
        # noop
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)
        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.squeeze(), p)
        with catch_warnings(record=True):
            for p4d in [tm.makePanel4D()]:
                tm.assert_panel4d_equal(p4d.squeeze(), p4d)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        with catch_warnings(record=True):
            p = tm.makePanel().reindex(items=['ItemA'])
            tm.assert_frame_equal(p.squeeze(), p['ItemA'])

            p = tm.makePanel().reindex(items=['ItemA'], minor_axis=['A'])
            tm.assert_series_equal(p.squeeze(), p.loc['ItemA', :, 'A'])

        with catch_warnings(record=True):
            p4d = tm.makePanel4D().reindex(labels=['label1'])
            tm.assert_panel_equal(p4d.squeeze(), p4d['label1'])

        with catch_warnings(record=True):
            p4d = tm.makePanel4D().reindex(labels=['label1'], items=['ItemA'])
            tm.assert_frame_equal(p4d.squeeze(), p4d.loc['label1', 'ItemA'])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name='five')
        empty_frame = DataFrame([empty_series])
        with catch_warnings(record=True):
            empty_panel = Panel({'six': empty_frame})

        [tm.assert_series_equal(empty_series, higher_dim.squeeze())
         for higher_dim in [empty_series, empty_frame, empty_panel]]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis='index'), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis='columns'), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        pytest.raises(ValueError, df.squeeze, axis=2)
        pytest.raises(ValueError, df.squeeze, axis='x')

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Exemple #23
0
    def setUp(self):
        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.objSeries = tm.makeObjectSeries()
        self.objSeries.name = 'objects'

        self.empty = Series([], index=[])
Exemple #24
0
    def setUp(self):
        import matplotlib as mpl
        self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1')
        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.iseries = tm.makePeriodSeries()
        self.iseries.name = 'iseries'
    def setUp(self):
        import matplotlib as mpl
        self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1')
        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.iseries = tm.makePeriodSeries()
        self.iseries.name = 'iseries'
Exemple #26
0
    def test_sparse_series(self):

        s = tm.makeStringSeries()
        s[3:5] = np.nan
        ss = s.to_sparse()
        self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True)

        ss2 = s.to_sparse(kind="integer")
        self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True)

        ss3 = s.to_sparse(fill_value=0)
        self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True)
Exemple #27
0
    def test_sparse_series(self):

        s = tm.makeStringSeries()
        s[3:5] = np.nan
        ss = s.to_sparse()
        self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True)

        ss2 = s.to_sparse(kind="integer")
        self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True)

        ss3 = s.to_sparse(fill_value=0)
        self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True)
Exemple #28
0
    def test_squeeze(self):
        # noop
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries()
        ]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.squeeze(), p)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            p = tm.makePanel().reindex(items=['ItemA'])
            tm.assert_frame_equal(p.squeeze(), p['ItemA'])

            p = tm.makePanel().reindex(items=['ItemA'], minor_axis=['A'])
            tm.assert_series_equal(p.squeeze(), p.loc['ItemA', :, 'A'])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name='five')
        empty_frame = DataFrame([empty_series])
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            empty_panel = Panel({'six': empty_frame})

        [
            tm.assert_series_equal(empty_series, higher_dim.squeeze())
            for higher_dim in [empty_series, empty_frame, empty_panel]
        ]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis='index'), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis='columns'), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        pytest.raises(ValueError, df.squeeze, axis=2)
        pytest.raises(ValueError, df.squeeze, axis='x')

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
    def test_series(self):
        s = tm.makeStringSeries()
        self._check_roundtrip(s, tm.assert_series_equal)

        ts = tm.makeTimeSeries()
        self._check_roundtrip(ts, tm.assert_series_equal)

        ts2 = Series(ts.index, Index(ts.index, dtype=object))
        self._check_roundtrip(ts2, tm.assert_series_equal)

        ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object),
                                      dtype=object))
        self._check_roundtrip(ts3, tm.assert_series_equal)
    def setUp(self):
        TestPlotBase.setUp(self)
        import matplotlib as mpl
        mpl.rcdefaults()

        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.iseries = tm.makePeriodSeries()
        self.iseries.name = 'iseries'
Exemple #31
0
    def setup_method(self, method):
        TestPlotBase.setup_method(self, method)
        import matplotlib as mpl
        mpl.rcdefaults()

        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.iseries = tm.makePeriodSeries()
        self.iseries.name = 'iseries'
Exemple #32
0
    def test_series(self):
        s = tm.makeStringSeries()
        self._check_roundtrip(s, tm.assert_series_equal)

        ts = tm.makeTimeSeries()
        self._check_roundtrip(ts, tm.assert_series_equal)

        ts2 = Series(ts.index, Index(ts.index, dtype=object))
        self._check_roundtrip(ts2, tm.assert_series_equal)

        ts3 = Series(ts.values,
                     Index(np.asarray(ts.index, dtype=object), dtype=object))
        self._check_roundtrip(ts3, tm.assert_series_equal)
Exemple #33
0
 def test_take(self):
     indices = [1, 5, -2, 6, 3, -1]
     for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
               tm.makeObjectSeries()]:
         out = s.take(indices)
         expected = Series(data=s.values.take(indices),
                           index=s.index.take(indices), dtype=s.dtype)
         tm.assert_series_equal(out, expected)
     for df in [tm.makeTimeDataFrame()]:
         out = df.take(indices)
         expected = DataFrame(data=df.values.take(indices, axis=0),
                              index=df.index.take(indices),
                              columns=df.columns)
         tm.assert_frame_equal(out, expected)
Exemple #34
0
 def test_take(self):
     indices = [1, 5, -2, 6, 3, -1]
     for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
               tm.makeObjectSeries()]:
         out = s.take(indices)
         expected = Series(data=s.values.take(indices),
                           index=s.index.take(indices), dtype=s.dtype)
         tm.assert_series_equal(out, expected)
     for df in [tm.makeTimeDataFrame()]:
         out = df.take(indices)
         expected = DataFrame(data=df.values.take(indices, axis=0),
                              index=df.index.take(indices),
                              columns=df.columns)
         tm.assert_frame_equal(out, expected)
    def test_sem(self):
        string_series = tm.makeStringSeries().rename('series')
        datetime_series = tm.makeTimeSeries().rename('ts')

        alt = lambda x: np.std(x, ddof=1) / np.sqrt(len(x))
        self._check_stat_op('sem', alt, string_series)

        result = datetime_series.sem(ddof=4)
        expected = np.std(datetime_series.values,
                          ddof=4) / np.sqrt(len(datetime_series.values))
        tm.assert_almost_equal(result, expected)

        # 1 - element series with ddof=1
        s = datetime_series.iloc[[0]]
        result = s.sem(ddof=1)
        assert pd.isna(result)
Exemple #36
0
    def test_transpose(self):
        msg = (r"transpose\(\) got multiple values for "
               r"keyword argument 'axes'")
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            # calls implementation in pandas/core/base.py
            tm.assert_series_equal(s.transpose(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.transpose().transpose(), df)

        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.transpose(2, 0, 1)
                                      .transpose(1, 2, 0), p)
                tm.assert_raises_regex(TypeError, msg, p.transpose,
                                       2, 0, 1, axes=(2, 0, 1))
Exemple #37
0
    def test_transpose(self):
        msg = (r"transpose\(\) got multiple values for "
               r"keyword argument 'axes'")
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            # calls implementation in pandas/core/base.py
            tm.assert_series_equal(s.transpose(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.transpose().transpose(), df)

        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.transpose(2, 0, 1)
                                      .transpose(1, 2, 0), p)
                tm.assert_raises_regex(TypeError, msg, p.transpose,
                                       2, 0, 1, axes=(2, 0, 1))
Exemple #38
0
def test_isnull():
    assert not isnull(1.)
    assert isnull(None)
    assert isnull(np.NaN)
    assert not isnull(np.inf)
    assert not isnull(-np.inf)

    for s in [tm.makeFloatSeries(),tm.makeStringSeries(),
              tm.makeObjectSeries(),tm.makeTimeSeries(),tm.makePeriodSeries()]:
            assert(isinstance(isnull(s), Series))

    # call on DataFrame
    df = DataFrame(np.random.randn(10, 5))
    df['foo'] = 'bar'
    result = isnull(df)
    expected = result.apply(isnull)
    tm.assert_frame_equal(result, expected)
Exemple #39
0
    def test_squeeze(self):
        # noop
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries()
        ]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name='five')
        empty_frame = DataFrame([empty_series])
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            empty_panel = Panel({'six': empty_frame})

        [
            tm.assert_series_equal(empty_series, higher_dim.squeeze())
            for higher_dim in [empty_series, empty_frame, empty_panel]
        ]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis='index'), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis='columns'), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        msg = ("No axis named 2 for object type <class"
               " 'pandas.core.frame.DataFrame'>")
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis=2)
        msg = ("No axis named x for object type <class"
               " 'pandas.core.frame.DataFrame'>")
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis='x')

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Exemple #40
0
def test_isnull():
    assert not isnull(1.)
    assert isnull(None)
    assert isnull(np.NaN)
    assert not isnull(np.inf)
    assert not isnull(-np.inf)

    for s in [tm.makeFloatSeries(),tm.makeStringSeries(),
              tm.makeObjectSeries(),tm.makeTimeSeries(),tm.makePeriodSeries()]:
        assert(isinstance(isnull(s), np.ndarray))

    # call on DataFrame
    df = DataFrame(np.random.randn(10, 5))
    df['foo'] = 'bar'
    result = isnull(df)
    expected = result.apply(isnull)
    tm.assert_frame_equal(result, expected)
Exemple #41
0
    def test_isnull(self):
        self.assertFalse(isnull(1.))
        self.assertTrue(isnull(None))
        self.assertTrue(isnull(np.NaN))
        self.assertTrue(float('nan'))
        self.assertFalse(isnull(np.inf))
        self.assertFalse(isnull(-np.inf))

        # series
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries(),
                tm.makeTimeSeries(),
                tm.makePeriodSeries()
        ]:
            self.assertIsInstance(isnull(s), Series)

        # frame
        for df in [
                tm.makeTimeDataFrame(),
                tm.makePeriodFrame(),
                tm.makeMixedDataFrame()
        ]:
            result = isnull(df)
            expected = df.apply(isnull)
            tm.assert_frame_equal(result, expected)

        # panel
        with catch_warnings(record=True):
            for p in [
                    tm.makePanel(),
                    tm.makePeriodPanel(),
                    tm.add_nans(tm.makePanel())
            ]:
                result = isnull(p)
                expected = p.apply(isnull)
                tm.assert_panel_equal(result, expected)

        # panel 4d
        with catch_warnings(record=True):
            for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]:
                result = isnull(p)
                expected = p.apply(isnull)
                tm.assert_panel4d_equal(result, expected)
Exemple #42
0
    def test_idxmax(self):
        # test idxmax
        # _check_stat_op approach can not be used here because of isna check.
        string_series = tm.makeStringSeries().rename("series")

        # add some NaNs
        string_series[5:15] = np.NaN

        # skipna or no
        assert string_series[string_series.idxmax()] == string_series.max()
        assert pd.isna(string_series.idxmax(skipna=False))

        # no NaNs
        nona = string_series.dropna()
        assert nona[nona.idxmax()] == nona.max()
        assert nona.index.values.tolist().index(
            nona.idxmax()) == nona.values.argmax()

        # all NaNs
        allna = string_series * np.nan
        assert pd.isna(allna.idxmax())

        from pandas import date_range

        s = Series(date_range("20130102", periods=6))
        result = s.idxmax()
        assert result == 5

        s[5] = np.nan
        result = s.idxmax()
        assert result == 4

        # Float64Index
        # GH#5914
        s = pd.Series([1, 2, 3], [1.1, 2.1, 3.1])
        result = s.idxmax()
        assert result == 3.1
        result = s.idxmin()
        assert result == 1.1

        s = pd.Series(s.index, s.index)
        result = s.idxmax()
        assert result == 3.1
        result = s.idxmin()
        assert result == 1.1
Exemple #43
0
    def test_isna_isnull(self, isna_f):
        assert not isna_f(1.)
        assert isna_f(None)
        assert isna_f(np.NaN)
        assert float('nan')
        assert not isna_f(np.inf)
        assert not isna_f(-np.inf)

        # series
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries(),
                tm.makeTimeSeries(),
                tm.makePeriodSeries()
        ]:
            assert isinstance(isna_f(s), Series)

        # frame
        for df in [
                tm.makeTimeDataFrame(),
                tm.makePeriodFrame(),
                tm.makeMixedDataFrame()
        ]:
            result = isna_f(df)
            expected = df.apply(isna_f)
            tm.assert_frame_equal(result, expected)

        # panel
        with catch_warnings(record=True):
            for p in [
                    tm.makePanel(),
                    tm.makePeriodPanel(),
                    tm.add_nans(tm.makePanel())
            ]:
                result = isna_f(p)
                expected = p.apply(isna_f)
                tm.assert_panel_equal(result, expected)

        # panel 4d
        with catch_warnings(record=True):
            for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]:
                result = isna_f(p)
                expected = p.apply(isna_f)
                tm.assert_panel4d_equal(result, expected)
Exemple #44
0
    def setUp(self):
        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.objSeries = tm.makeObjectSeries()
        self.objSeries.name = 'objects'

        self.empty_series = Series([], index=[])
        self.empty_frame = DataFrame({})

        self.frame = _frame.copy()
        self.frame2 = _frame2.copy()
        self.intframe = _intframe.copy()
        self.tsframe = _tsframe.copy()
        self.mixed_frame = _mixed_frame.copy()
Exemple #45
0
def test_isnull():
    assert not isnull(1.)
    assert isnull(None)
    assert isnull(np.NaN)
    assert not isnull(np.inf)
    assert not isnull(-np.inf)

    # series
    for s in [
            tm.makeFloatSeries(),
            tm.makeStringSeries(),
            tm.makeObjectSeries(),
            tm.makeTimeSeries(),
            tm.makePeriodSeries()
    ]:
        assert (isinstance(isnull(s), Series))

    # frame
    for df in [
            tm.makeTimeDataFrame(),
            tm.makePeriodFrame(),
            tm.makeMixedDataFrame()
    ]:
        result = isnull(df)
        expected = df.apply(isnull)
        tm.assert_frame_equal(result, expected)

    # panel
    for p in [
            tm.makePanel(),
            tm.makePeriodPanel(),
            tm.add_nans(tm.makePanel())
    ]:
        result = isnull(p)
        expected = p.apply(isnull)
        tm.assert_panel_equal(result, expected)

    # panel 4d
    for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]:
        result = isnull(p)
        expected = p.apply(isnull)
        tm.assert_panel4d_equal(result, expected)
Exemple #46
0
    def test_isna_isnull(self, isna_f):
        assert not isna_f(1.)
        assert isna_f(None)
        assert isna_f(np.NaN)
        assert float('nan')
        assert not isna_f(np.inf)
        assert not isna_f(-np.inf)

        # series
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert isinstance(isna_f(s), Series)

        # frame
        for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
                   tm.makeMixedDataFrame()]:
            result = isna_f(df)
            expected = df.apply(isna_f)
            tm.assert_frame_equal(result, expected)
    def test_skew(self):
        from scipy.stats import skew

        string_series = tm.makeStringSeries().rename('series')

        alt = lambda x: skew(x, bias=False)
        self._check_stat_op('skew', alt, string_series)

        # test corner cases, skew() returns NaN unless there's at least 3
        # values
        min_N = 3
        for i in range(1, min_N + 1):
            s = Series(np.ones(i))
            df = DataFrame(np.ones((i, i)))
            if i < min_N:
                assert np.isnan(s.skew())
                assert np.isnan(df.skew()).all()
            else:
                assert 0 == s.skew()
                assert (df.skew() == 0).all()
Exemple #48
0
    def test_squeeze(self):
        # noop
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries()
        ]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=["A"])
        tm.assert_series_equal(df.squeeze(), df["A"])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name="five")
        empty_frame = DataFrame([empty_series])

        [
            tm.assert_series_equal(empty_series, higher_dim.squeeze())
            for higher_dim in [empty_series, empty_frame]
        ]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis="index"), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis="columns"), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        msg = "No axis named 2 for object type <class 'pandas.core.frame.DataFrame'>"
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis=2)
        msg = "No axis named x for object type <class 'pandas.core.frame.DataFrame'>"
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis="x")

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Exemple #49
0
    def setup_method(self, method):
        super().setup_method(method)

        self.d = {}

        s = tm.makeStringSeries()
        s.name = "string"
        self.d["string"] = s

        s = tm.makeObjectSeries()
        s.name = "object"
        self.d["object"] = s

        s = Series(iNaT, dtype="M8[ns]", index=range(5))
        self.d["date"] = s

        data = {
            "A": [0.0, 1.0, 2.0, 3.0, np.nan],
            "B": [0, 1, 0, 1, 0],
            "C": ["foo1", "foo2", "foo3", "foo4", "foo5"],
            "D":
            date_range("1/1/2009", periods=5),
            "E": [0.0, 1, Timestamp("20100101"), "foo", 2.0],
            "F": [Timestamp("20130102", tz="US/Eastern")] * 2 +
            [Timestamp("20130603", tz="CET")] * 3,
            "G": [Timestamp("20130102", tz="US/Eastern")] * 5,
            "H":
            Categorical([1, 2, 3, 4, 5]),
            "I":
            Categorical([1, 2, 3, 4, 5], ordered=True),
            "J": (np.bool_(1), 2, 3, 4, 5),
        }

        self.d["float"] = Series(data["A"])
        self.d["int"] = Series(data["B"])
        self.d["mixed"] = Series(data["E"])
        self.d["dt_tz_mixed"] = Series(data["F"])
        self.d["dt_tz"] = Series(data["G"])
        self.d["cat_ordered"] = Series(data["H"])
        self.d["cat_unordered"] = Series(data["I"])
        self.d["numpy_bool_mixed"] = Series(data["J"])
Exemple #50
0
    def setup_method(self, method):
        super(TestSeries, self).setup_method(method)

        self.d = {}

        s = tm.makeStringSeries()
        s.name = 'string'
        self.d['string'] = s

        s = tm.makeObjectSeries()
        s.name = 'object'
        self.d['object'] = s

        s = Series(iNaT, dtype='M8[ns]', index=range(5))
        self.d['date'] = s

        data = {
            'A': [0., 1., 2., 3., np.nan],
            'B': [0, 1, 0, 1, 0],
            'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'],
            'D':
            date_range('1/1/2009', periods=5),
            'E': [0., 1, Timestamp('20100101'), 'foo', 2.],
            'F': [Timestamp('20130102', tz='US/Eastern')] * 2 +
            [Timestamp('20130603', tz='CET')] * 3,
            'G': [Timestamp('20130102', tz='US/Eastern')] * 5,
            'H':
            Categorical([1, 2, 3, 4, 5]),
            'I':
            Categorical([1, 2, 3, 4, 5], ordered=True),
            'J': (np.bool_(1), 2, 3, 4, 5),
        }

        self.d['float'] = Series(data['A'])
        self.d['int'] = Series(data['B'])
        self.d['mixed'] = Series(data['E'])
        self.d['dt_tz_mixed'] = Series(data['F'])
        self.d['dt_tz'] = Series(data['G'])
        self.d['cat_ordered'] = Series(data['H'])
        self.d['cat_unordered'] = Series(data['I'])
        self.d['numpy_bool_mixed'] = Series(data['J'])
Exemple #51
0
    def setup_method(self, method):
        self.dirpath = tm.get_data_path()

        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.objSeries = tm.makeObjectSeries()
        self.objSeries.name = 'objects'

        self.empty_series = Series([], index=[])
        self.empty_frame = DataFrame({})

        self.frame = _frame.copy()
        self.frame2 = _frame2.copy()
        self.intframe = _intframe.copy()
        self.tsframe = _tsframe.copy()
        self.mixed_frame = _mixed_frame.copy()
        self.categorical = _cat_frame.copy()
Exemple #52
0
    def test_take(self):
        indices = [1, 5, -2, 6, 3, -1]
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries()
        ]:
            out = s.take(indices)
            expected = Series(data=s.values.take(indices),
                              index=s.index.take(indices),
                              dtype=s.dtype)
            tm.assert_series_equal(out, expected)
        for df in [tm.makeTimeDataFrame()]:
            out = df.take(indices)
            expected = DataFrame(data=df.values.take(indices, axis=0),
                                 index=df.index.take(indices),
                                 columns=df.columns)
            tm.assert_frame_equal(out, expected)

        indices = [-3, 2, 0, 1]
        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                out = p.take(indices)
                expected = Panel(data=p.values.take(indices, axis=0),
                                 items=p.items.take(indices),
                                 major_axis=p.major_axis,
                                 minor_axis=p.minor_axis)
                tm.assert_panel_equal(out, expected)

        with catch_warnings(record=True):
            for p4d in [tm.makePanel4D()]:
                out = p4d.take(indices)
                expected = Panel4D(data=p4d.values.take(indices, axis=0),
                                   labels=p4d.labels.take(indices),
                                   major_axis=p4d.major_axis,
                                   minor_axis=p4d.minor_axis,
                                   items=p4d.items)
                tm.assert_panel4d_equal(out, expected)
Exemple #53
0
    def setUp(self):
        self.ts = tm.makeTimeSeries()  # Was at top level in test_series
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'
Exemple #54
0
    def setup_method(self):
        self.ts = tm.makeTimeSeries()  # Was at top level in test_series
        self.ts.name = "ts"

        self.series = tm.makeStringSeries()
        self.series.name = "series"
Exemple #55
0
    def setUp(self):
        self.ts = common.makeTimeSeries()
        self.series = common.makeStringSeries()
        self.objSeries = common.makeObjectSeries()

        self.empty = Series([], index=[])
Exemple #56
0
 def test_neg(self):
     ser = tm.makeStringSeries()
     ser.name = "series"
     assert_series_equal(-ser, -1 * ser)
Exemple #57
0
 def test_transpose(self):
     for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]:
         # calls implementation in pandas/core/base.py
         tm.assert_series_equal(s.transpose(), s)
     for df in [tm.makeTimeDataFrame()]:
         tm.assert_frame_equal(df.transpose().transpose(), df)
Exemple #58
0
 def series(self):
     series = tm.makeStringSeries()
     series.name = 'series'
     return series
Exemple #59
0
 def test_invert(self):
     ser = tm.makeStringSeries()
     ser.name = "series"
     assert_series_equal(-(ser < 0), ~(ser < 0))
Exemple #60
0
    def setUp(self):
        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'