Exemple #1
0
 def __init__(self, ax, fig, user, par=None):
     if par is None:
         par = ['0']
     self.fig = fig
     self.ax = ax
     self.ful = rcsv('{}\{}.ful'.format(*user[2:4]), sep=',')
     self.parameters = par
Exemple #2
0
def asignar_sun(dataframe,
                CVE_MUN='CVE_MUN',
                vars=['CVE_MUN', 'CVE_SUN', 'NOM_SUN', 'TIPO_SUN']):
    sun = rcsv(
        r'D:\PCCS\01_Analysis\01_DataAnalysis\00_Parametros\sun_main.csv',
        dtype={
            'CVE_SUN': str,
            'CVE_ENT': str,
            'CVE_MUN': str,
            'CVE_LOC': str
        },
        encoding='UTF-8',
    )
    sun['CVE_SUN'] = sun['CVE_SUN'].apply('{:0>3}'.format)
    sun['CVE_ENT'] = sun['CVE_ENT'].apply('{:0>2}'.format)
    sun['CVE_MUN'] = sun['CVE_MUN'].apply('{:0>5}'.format)

    print('Catalogo de variables. Default vars = {}'.format(vars))
    print(list(sun))
    if 'CVE_MUN' not in vars: vars.append('CVE_MUN')

    dataframe.rename(
        columns={CVE_MUN: 'CVE_MUN'}, inplace=True
    )  # Estandariza el nombre de la columna de clave geoestadistica
    sun = sun[vars]
    dataframe = pd.merge(dataframe, sun, on='CVE_MUN')

    return dataframe
Exemple #3
0
    def alfa_t2(self, name, property=None):
        ffile = rcsv('{}.ful'.format(name), sep=',')
        fire_site = self.mc_rand(ffile)
        config = ffile.iloc[fire_site]

        fuel_xes = (config.XA, config.XB)
        fuel_yes = (config.YA, config.YB)
        fuel_zes = (config.ZA, config.ZB)

        hrrpua = triangular(config.hrrpua_min, config.hrrpua_max, mode=config.hrrpua_mode) * 1000     # kW/m2

        if not property:
            alpha = triangular(config.alpha_min, config.alpha_max, mode=config.alpha_mode)      # kW/s2
        elif property == 'store':
            alpha = hrrpua * random.lognormal(-9.72, 0.97)       # kW/s2

        area = min(config.hrr_max / hrrpua * 1000, self.a_max)     # m2
        area = config.hrr_max / hrrpua * 1000  # m2

        print('alpha:{}, hrrpua:{}'.format(alpha, hrrpua))
        hrr = []
        for t_frag in range(0, 120):
            t = self.t_end * t_frag/119
            hrr.extend([round(i, 4) for i in [t/60, alpha / 1000 * (t ** 2)]])
            if hrr[-1] > area * hrrpua:
                hrr[-1] = area * hrrpua

        return hrr, area, fuel_zes, fuel_xes, fuel_yes, hrrpua, alpha
Exemple #4
0
    def sprink_noeff(self, name, property=None):
        ffile = rcsv('{}.ful'.format(name), sep=',')
        fire_site, ases = self.mc_rand(ffile)

        config = ffile.iloc[fire_site]

        fuel_xes = (config.XA, config.XB)
        fuel_yes = (config.YA, config.YB)
        fuel_zes = (config.ZA, config.ZB)

        hrrpua = triangular(config.hrrpua_min, config.hrrpua_max, mode=config.hrrpua_mode) * 1000  # [kW]

        if not property:
            alpha = triangular(config.alpha_min, config.alpha_max, mode=config.alpha_mode)  # [kW/s2]
        elif property == 'store':
            alpha = hrrpua * random.lognormal(-9.72, 0.97)   # [kW/s2]

        # q_0 = min(alpha * config.t_sprink ** 2, self.a_max * hrrpua)    # [kW]
        q_0 = alpha * config.t_sprink ** 2  # [kW]

        area = q_0 / hrrpua     # [m2]

        print('alpha:{}, hrrpua:{}'.format(alpha, hrrpua))
        hrr = []
        for t_frag in range(0, 120):
            t = self.t_end * t_frag/120

            if t >= config.t_sprink:
                #                                 [min], [kW/s2 * 1k * s2]=[MW]
                hrr.extend([round(i, 4) for i in [t/60, alpha / 1000 * (config.t_sprink ** 2)]])
            else:
                hrr.extend([round(i, 4) for i in [t/60, alpha / 1000 * (t ** 2)]])

        return hrr, area, fuel_zes, fuel_xes, fuel_yes, hrrpua, alpha
Exemple #5
0
def asignar_sun(dataframe,
                CVE_MUN='CVE_MUN',
                variables=['CVE_MUN', 'CVE_SUN', 'NOM_SUN', 'TIPO_SUN']):
    # Cargar archivo del Subsistema Principal del SUN
    sun = rcsv(
        r'D:\PCCS\01_Dmine\00_Generales\sun_main.csv',
        dtype={
            'CVE_SUN': str,
            'CVE_ENT': str,
            'CVE_MUN': str,
            'CVE_LOC': str,
            'CVE_SUNMUN': str
        },
        encoding='UTF-8',
    )
    sun['CVE_SUN'] = sun['CVE_SUN'].apply('{:0>3}'.format)
    sun['CVE_ENT'] = sun['CVE_ENT'].apply('{:0>2}'.format)
    sun['CVE_MUN'] = sun['CVE_MUN'].apply('{:0>5}'.format)

    #    print('Catalogo de variables. Default vars = {}'.format(vars))
    #    print(list(sun))
    if 'CVE_MUN' not in variables: variables.append('CVE_MUN')

    dataframe.rename(
        columns={CVE_MUN: 'CVE_MUN'}, inplace=True
    )  # Estandariza el nombre de la columna de clave geoestadistica
    sun.drop_duplicates(
        'CVE_SUNMUN', keep='first', inplace=True
    )  # Quita los municipios que en el dataset aparecen duplicados por estar subdivididos en localidades
    sun = sun[variables]
    dataframe = pd.merge(dataframe, sun, on='CVE_MUN')

    # Eliminar registros que no formen parte del Subsistema Principal
    return dataframe
Exemple #6
0
 def __init__(self, res_path, t_crit, rset, probs):
     chdir(res_path)
     self.results = rcsv('stoch_rest.csv', sep=',')
     self.t_crit = t_crit
     self.rset = rset
     self.p_coll = probs[0]
     self.p_evac = probs[1]
Exemple #7
0
    def mean(self):
        data_list = []

        for t in range(self.time[0], self.time[1], 10):
            for o in self.orientation:
                # split csv files for specified bounds
                with open('f2a_{}_{}.csv'.format(t, o)) as temp:
                    files = temp.read().split('Patch ')
                [self.split_csv(f) for f in files[1:]]
                # merge splitted csv files using Y as key

                data_list.append(rcsv('f2a_{}_{}.csv'.format(t, o), sep=','))
                break
            break
Exemple #8
0
def generate_sim(data_path):
    t = sec()
    chdir(config['results_path'])
    data_set = rcsv(data_path)
    for i, r in data_set.iterrows():
        if r['profile'] != r['profile']:
            with open('{0}\{0}.err'.format(r['ID']), 'w') as err:
                mess = '[WARNING] There are no elements above the fire base in scenario {}'.format(r['ID'])
                err.write('{}\nMax element temperature in te scenario is equal to the ambient temperature'.format(mess))
            print(out(outpth, mess))
            continue
        chdir(str(r['ID']))
        MultiT2D(config['time_end']).prepare(r)
        chdir('..')

    return '[OK] {} simulation files created ({} s)'.format(len(data_set.index), round(sec() - t, 2))
Exemple #9
0
    def __init__(self, t_end, title, fire_type, fuelconfig):
        self.t_end = t_end  # simulation duration time
        self.title = title  # simulation title
        self.f_type = fire_type  # type of fire
        self.fire_coords = []  # to export to Single class

        print(out(outpth, 'Reading fuel configuration files...'), end='\r')
        t = sec()
        if fuelconfig == 'stp':
            self.fuel = fires.Fuel(title).read_fuel()  # import fuel from STEP and FUL config files
        elif fuelconfig == 'obj':
            self.fuel = fires.FuelOBJ(title).read_fuel()  # import fuel from OBJ and FUL config files
        else:
            self.fuel = rcsv('{}.ful'.format(title))

        print(out(outpth, '[OK] Fuel configuration imported ({} s)'.format(round(sec() - t, 2))))
Exemple #10
0
    def save(self, rset, t_crit, errors):
        rset = int(rset)
        t_crit = int(t_crit)

        data = rcsv('stoch_rest.csv', sep=',')
        num_nocoll = len(data.time_crit[data.time_crit == 0])
        n_iter = len(data.t_max)

        save_list = ['v{}\n\nResults from {} iterations\n'.format(self.ver, n_iter)]
        err = [1, 1]    # actual uncertainty of calculation

        # calculating and writing exceeding critical temperature probability and uncertainty to the list
        try:
            p_coll = len(data.t_max[data.t_max < int(t_crit)]) / len(data.t_max)
            save_list.append('P(collapse) = {}\n'.format(1 - p_coll))
        except ZeroDivisionError:
            save_list.append('unable to calculate P(ASET<RSET) and RMSE\n')
            p_coll = 0
        err[0], save_list = self.uncertainity(save_list, p_coll, n_iter)

        # calculating and writing ASET<RSET probability and uncertainty to the list
        try:
            p_evac = (len(data.time_crit[data.time_crit <= int(rset)]) - num_nocoll) / (
                        len(data.time_crit) - num_nocoll)
            save_list.append('P(ASET < RSET) = {}\n'.format(p_evac))
        except ZeroDivisionError:
            save_list.append('unable to calculate P(ASET<RSET) and RMSE\n')
            p_evac = 0
        err[1], save_list = self.uncertainity(save_list, p_evac, n_iter)

        save_list.append('{} OZone errors occured'.format(errors))

        with open('results.txt', 'w') as file:
            file.writelines(save_list)

        # draw charts
        print('temp_crit={}\nRSET={}'.format(t_crit, rset))
        Charting(self.r_p, t_crit, rset, (p_coll, p_evac)). draw()

        # check if uncertainty is low enough to stop calculations
        if 0 < err[0] < 0.001 and 0 < err[1] < 0.001:
            return True
        else:
            return False
Exemple #11
0
    def newzealand1(self, name):
        fuel_height = (0.5, 18.5)
        fuel_xes = (0.5, 9.5)
        fuel_yes = (0.5, 19.5)
        hrr_max = 50

        config = rcsv('{}.ful'.format(name), sep=',')
        print(float(config.alpha_mode))
        alpha = triangular(*config.alpha_min, *config.alpha_max, mode=float(config.alpha_mode))
        hrrpua = triangular(*config.hrrpua_min, *config.hrrpua_max, mode=float(config.hrrpua_mode))
        area = hrr_max / hrrpua

        print('alpha:{}, hrrpua:{}'.format(round(alpha, 4), round(hrrpua,4)))
        hrr = []
        for i in range(0, int(self.t_end/120)):
            hrr.extend([i / 60, round(alpha / 1000 * (i ** 2), 4)])
            if hrr[-1] > hrr_max:
                hrr[-1] = hrr_max

        return hrr, area, fuel_height, fuel_xes, fuel_yes
    def _read_csv(cls, input_file):
        df_data = rcsv(input_file)
        df_data['学号'] = df_data['学号'].astype('str')
        df_data.set_index('学号')
        dicts = []

        for index, row in df_data.iterrows():
            if not row['实验结论为空']:
                sentence = {
                            'id' : row['学号'], 
                            'isTrain' : row['isTrain'], 
                            'content' : row['content'], 
                            'a' : row['结论跑题'], 
                            'b' : row['提到变频器多频率,改变频率多个值之类的'], 
                            'c' : row['变频器一定,流量值稳定'], 
                            'd' : row['频率越大,流量值越大'], 
                            'e' : row['流量计能反映瞬时流量值,数据准确'], 
                            }
                dicts.append(sentence)
        return dicts
Exemple #13
0
    def newzealand2(self, name):
        fuel_height = (0.32, 34.1)
        fuel_xes = (0.3, 23.1)
        fuel_yes = (10.3, 101.7)
        hrr_max = 50

        H = fuel_height[1] - fuel_height[0]
        A_max = (fuel_xes[1] - fuel_xes[0]) ** 2 * 3.1415 / 4

        config = rcsv('{}.ful'.format(name), sep=',')
        alpha = triangular(*config.alpha_min, *config.alpha_max, mode=float(config.alpha_mode))
        area = triangular(0, A_max)

        print('alpha:{}, radius: {}'.format(alpha, (area / 3.1415) ** 0.5))
        hrr = []
        for i in range(0, int(self.t_end/120)):
            hrr.extend([i / 60, round(H * alpha * (i ** 3) / 1000, 4)])
            if hrr[-1] > hrr_max:
                hrr[-1] = hrr_max

        return hrr, area, fuel_height, fuel_xes, fuel_yes
Exemple #14
0
    def row_maker(self, name):
        # change CSV file to applicable form

        with open(name) as file:
            lines = file.readlines()
        if lines[0][:5] == 'Patch':
            lines.pop(0)
            lines.pop(1)
            for i in range(len(lines[1:])):
                lines[i + 1] = ','.join([str(i), lines[i + 1]])
            with open(name, 'w') as file:
                file.writelines(lines)

        csv = rcsv(name)
        row = []
        csv.columns = csv.columns.str.strip().str.replace(' ', '_')

        for v in csv.iloc[:, -1]:
            if type(v) != str():
                row.append(v)

        return row
Exemple #15
0
    def split_mean(self, file):
        data = {}
        with open('temp.csv', 'w') as temp:
            temp.write(file)
        with open('temp.csv', 'r') as temp:
            f = temp.readlines()
        patch_no = f[0].split(' ')[0]
        with open('temp.csv', 'w') as temp:
            temp.writelines(f[1:])

        file = rcsv('temp.csv')
        file.drop(0, inplace=True)
        print(file.columns)

        # split according to Z

        file.drop([' X', 'Z'], axis='columns', inplace=True)

        # save in data dictionary as title:array(pandas df)
        # title = 'Patch{} X={} Z={}'.format(patch_no, x, z)
        # data{title:array}

        return data
Exemple #16
0
    # calculating and writing ASET<RSET probability and uncertainty to the list
    try:
        p_evacfailed = (len(data.time_crit[data.time_crit <= int(rset)]) -
                        num_nocoll) / (len(data.time_crit) - num_nocoll)
        save_list.append('P(ASET < RSET) = {}\n'.format(p_evacfailed))
    except ZeroDivisionError:
        save_list.append('unable to calculate P(ASET<RSET) and RMSE\n')
        p_evacfailed = 0
    err[1], save_list = uncertainty(save_list, p_evacfailed, n_iter)

    with open('results.txt', 'w') as file:
        file.writelines(save_list)
    print('[OK] Results summary written to TXT file')

    # draw charts
    Charting(data, t_crit, rset, (p_collapse, p_evacfailed)).draw()

    # check if uncertainty is low enough to stop calculations
    if 0 < err[0] < 0.001 and 0 < err[1] < 0.001:
        return True
    else:
        return False


if __name__ == '__main__':
    user = user_config(argv[1])
    summary(
        rcsv('{}\\{}_results.csv'.format(user['results_path'],
                                         user['case_title'])),
        temp_crit(user['miu']), user['RSET'])