def gen_cloud(self): high_prices = self.data_frame['High'] close_prices = self.data_frame['Close'] low_prices = self.data_frame['Low'] dates = self.data_frame.index nine_period_high = pd.rolling_max(self.data_frame['High'], window=self.period_high) nine_period_low = pd.rolling_min(self.data_frame['Low'], window=self.period_high) self.data_frame['tenkan_sen'] = (nine_period_high + nine_period_low) / 2 # Kijun-sen (Base Line): (26-period high + 26-period low)/2)) period26_high = pd.rolling_max(high_prices, window=self.base_line) period26_low = pd.rolling_min(low_prices, window=self.base_line) self.data_frame['kijun_sen'] = (period26_high + period26_low) / 2 # Senkou Span A (Leading Span A): (Conversion Line + Base Line)/2)) self.data_frame['senkou_span_a'] = ( (data_frame['tenkan_sen'] + data_frame['kijun_sen']) / 2).shift( self.base_line) # Senkou Span B (Leading Span B): (52-period high + 52-period low)/2)) period52_high = pd.rolling_max(high_prices, window=self.leading_line) period52_low = pd.rolling_min(low_prices, window=self.leading_line) self.data_frame['senkou_span_b'] = ((period52_high + period52_low) / 2).shift(26) # The most current closing price plotted 22 time periods behind (optional) #self.data_frame['chikou_span'] = close_prices.shift(-22) # 22 according to investopedia print(self.data_frame.plot())
def ichimoku(self, l_sym, df_high, df_low): df_ichimoku_tenkan_u = pd.DataFrame(columns=l_sym, index=df_high.index) df_ichimoku_tenkan_l = pd.DataFrame(columns=l_sym, index=df_high.index) df_ichimoku_kijun_u = pd.DataFrame(columns=l_sym, index=df_high.index) df_ichimoku_kijun_l = pd.DataFrame(columns=l_sym, index=df_high.index) df_ichimoku_kijun = pd.DataFrame(columns=l_sym, index=df_high.index) df_ichimoku_tenkan = pd.DataFrame(columns=l_sym, index=df_high.index) for sym in l_sym: try: df_ichimoku_tenkan_u[sym] = pd.rolling_max(df_high[sym], min_periods=1, window=9) df_ichimoku_tenkan_l[sym] = pd.rolling_min(df_low[sym], min_periods=1, window=9) df_ichimoku_kijun_u[sym] = pd.rolling_max(df_high[sym], min_periods=1, window=26) df_ichimoku_kijun_l[sym] = pd.rolling_min(df_low[sym], min_periods=1, window=26) df_ichimoku_tenkan[sym] = (df_ichimoku_tenkan_u[sym] + df_ichimoku_tenkan_l[sym]) / 2 df_ichimoku_kijun[sym] = (df_ichimoku_kijun_u[sym] + df_ichimoku_kijun_l[sym]) / 2 except: pass return df_ichimoku_tenkan, df_ichimoku_kijun
def prepare(): warnings.filterwarnings("ignore") env = command_line_argument_parser() data, activities = load_dataset(env["filename"]) data['chest_absacc'] = data.apply(chest_absacc,axis=1) data['hand_absacc'] = data.apply(hand_absacc,axis=1) data['ankle_absacc'] = data.apply(ankle_absacc,axis=1) ws = env["WindowSize"] data['chest_absacc_max'] = pd.rolling_max(data['chest_absacc'], ws) data['hand_absacc_max'] = pd.rolling_max(data['hand_absacc'], ws) data['ankle_absacc_max'] = pd.rolling_max(data['ankle_absacc'], ws) data['chest_absacc_min'] = pd.rolling_min(data['chest_absacc'], ws) data['hand_absacc_min'] = pd.rolling_min(data['hand_absacc'], ws) data['ankle_absacc_min'] = pd.rolling_min(data['ankle_absacc'], ws) data['chest_acc_max_diff'] = data.chest_absacc_max - data.chest_absacc_min data['hand_acc_max_diff'] = data.hand_absacc_max - data.hand_absacc_min data['ankle_acc_max_diff'] = data.ankle_absacc_max - data.ankle_absacc_min activities = data.groupby('activity') feature_vector=['chest_acc_max_diff','hand_acc_max_diff','ankle_acc_max_diff'] data.dropna(subset=['chest_acc_max_diff','hand_acc_max_diff','ankle_acc_max_diff'],inplace=True) labels = data['activity'].values env["data"], env["activities"],env['labels'],env['feature_vector']= data,activities,labels,feature_vector return env
def main(): for currency in currencies: logging.info('Currency: {0}'.format(currency)) df = loadData(currency) # print df df = dropOutliers(df) # print df rl = pd.DataFrame(dtype=float) rl['high8'] = pd.rolling_max(df['high'], 8) rl['high13'] = pd.rolling_max(df['high'], 13) rl['high21'] = pd.rolling_max(df['high'], 21) rl['high5'] = pd.rolling_max(df['high'], 34) rl['low8'] = pd.rolling_min(df['low'], 8) rl['low13'] = pd.rolling_min(df['low'], 13) rl['low21'] = pd.rolling_min(df['low'], 21) rl['low5'] = pd.rolling_min(df['low'], 34) print rl.tail(20) rl = rl.iloc[-88:-22] logging.info('rl length {0}'.format(len(rl))) rl.plot() # plt.show() plt.savefig('resistance_lines.png') break
def process_data(self, mdf): xdf = self.proc_func(mdf, **self.proc_args) if self.win == -1: tr= pd.concat([xdf.high - xdf.low, abs(xdf.close - xdf.close.shift(1))], join='outer', axis=1).max(axis=1) elif self.win == 0: tr = pd.concat([(pd.rolling_max(xdf.high, 2) - pd.rolling_min(xdf.close, 2))*self.multiplier, (pd.rolling_max(xdf.close, 2) - pd.rolling_min(xdf.low, 2))*self.multiplier, xdf.high - xdf.close, xdf.close - xdf.low], join='outer', axis=1).max(axis=1) else: tr= pd.concat([pd.rolling_max(xdf.high, self.win) - pd.rolling_min(xdf.close, self.win), pd.rolling_max(xdf.close, self.win) - pd.rolling_min(xdf.low, self.win)], join='outer', axis=1).max(axis=1) xdf['TR'] = tr xdf['chanh'] = self.chan_high(xdf['high'], self.chan, **self.chan_func['high']['args']) xdf['chanl'] = self.chan_low(xdf['low'], self.chan, **self.chan_func['low']['args']) xdf['ATR'] = dh.ATR(xdf, n = self.atr_len) xdf['MA'] = dh.MA(xdf, n=self.atr_len, field = 'close') xdata = pd.concat([xdf['TR'].shift(1), xdf['MA'].shift(1), xdf['ATR'].shift(1), xdf['chanh'].shift(1), xdf['chanl'].shift(1), xdf['open']], axis=1, keys=['tr','ma', 'atr', 'chanh', 'chanl', 'dopen']).fillna(0) self.df = mdf.join(xdata, how = 'left').fillna(method='ffill') self.df['datetime'] = self.df.index self.df['cost'] = 0 self.df['pos'] = 0 self.df['traded_price'] = self.df['open']
def exit_model(sts_trade,days,atr_multiplier,ma_days,days_two): macd = talib.MACD(np.array(sts_trade['Settle']),macd_slow,macd_fast,macd_ma) macd = pd.DataFrame({'macd_slow':pd.Series(macd[0],index=sts_trade.index),'macd_fast':pd.Series(macd[1],index=sts_trade.index),'macd_dist':pd.Series(macd[2],index=sts_trade.index).shift(5)}) macd_shift = talib.MACD(np.array(sts_trade.shift(1)['Settle']),macd_slow,macd_fast,macd_ma) macd_shift = pd.DataFrame({'macd_slow_prev':pd.Series(macd_shift[0],index=sts_trade.index),'macd_fast_prev':pd.Series(macd_shift[1],index=sts_trade.index),'macd_dist_prev':pd.Series(macd_shift[2],index=sts_trade.index)}) macd_shift_one = talib.MACD(np.array(sts_trade.shift(2)['Settle']),macd_slow,macd_fast,macd_ma) macd_shift_one = pd.DataFrame({'macd_slow_prev_one':pd.Series(macd_shift_one[0],index=sts_trade.index),'macd_fast_prev_one':pd.Series(macd_shift_one[1],index=sts_trade.index),'macd_dist_prev_one':pd.Series(macd_shift_one[2],index=sts_trade.index)}) macd_shift_two = talib.MACD(np.array(sts_trade.shift(3)['Settle']),macd_slow,macd_fast,macd_ma) macd_shift_two = pd.DataFrame({'macd_slow_prev_two':pd.Series(macd_shift_two[0],index=sts_trade.index),'macd_fast_prev_two':pd.Series(macd_shift_two[1],index=sts_trade.index),'macd_dist_prev_two':pd.Series(macd_shift_two[2],index=sts_trade.index)}) macd_shift_three = talib.MACD(np.array(sts_trade.shift(4)['Settle']),macd_slow,macd_fast,macd_ma) macd_shift_three = pd.DataFrame({'macd_slow_prev_three':pd.Series(macd_shift_three[0],index=sts_trade.index),'macd_fast_prev_three':pd.Series(macd_shift_three[1],index=sts_trade.index),'macd_dist_prev_three':pd.Series(macd_shift_three[2],index=sts_trade.index)}) macd_shift_four = talib.MACD(np.array(sts_trade.shift(5)['Settle']),macd_slow,macd_fast,macd_ma) macd_shift_four = pd.DataFrame({'macd_slow_prev_four':pd.Series(macd_shift_four[0],index=sts_trade.index),'macd_fast_prev_four':pd.Series(macd_shift_four[1],index=sts_trade.index),'macd_dist_prev_four':pd.Series(macd_shift_four[2],index=sts_trade.index)}) macd_shift_five = talib.MACD(np.array(sts_trade.shift(6)['Settle']),macd_slow,macd_fast,macd_ma) macd_shift_five = pd.DataFrame({'macd_slow_prev_five':pd.Series(macd_shift_five[0],index=sts_trade.index),'macd_fast_prev_five':pd.Series(macd_shift_five[1],index=sts_trade.index),'macd_dist_prev_five':pd.Series(macd_shift_five[2],index=sts_trade.index)}) adx_min = pd.DataFrame(talib.MINUS_DI(np.array(sts_trade['High']),np.array(sts_trade['Low']),np.array(sts_trade['Settle']),timeperiod = adx_days),columns=['adx_min'],index=sts_trade.index) adx_plus = pd.DataFrame(talib.PLUS_DI(np.array(sts_trade['High']),np.array(sts_trade['Low']),np.array(sts_trade['Settle']),timeperiod = adx_days),columns=['adx_plus'],index=sts_trade.index) adx_min_shift = pd.DataFrame(talib.MINUS_DI(np.array(sts_trade.shift(1)['High']),np.array(sts_trade.shift(1)['Low']),np.array(sts_trade.shift(1)['Settle']),timeperiod = adx_days),columns=['adx_minprev'],index=sts_trade.index) adx_plus_shift = pd.DataFrame(talib.PLUS_DI(np.array(sts_trade.shift(1)['High']),np.array(sts_trade.shift(1)['Low']),np.array(sts_trade.shift(1)['Settle']),timeperiod = adx_days),columns=['adx_plusprev'],index=sts_trade.index) adx_min_shift_two = pd.DataFrame(talib.MINUS_DI(np.array(sts_trade.shift(2)['High']),np.array(sts_trade.shift(2)['Low']),np.array(sts_trade.shift(2)['Settle']),timeperiod = adx_days),columns=['adx_minprev_two'],index=sts_trade.index) adx_plus_shift_two = pd.DataFrame(talib.PLUS_DI(np.array(sts_trade.shift(2)['High']),np.array(sts_trade.shift(2)['Low']),np.array(sts_trade.shift(2)['Settle']),timeperiod = adx_days),columns=['adx_plusprev_two'],index=sts_trade.index) adx_min_shift_three = pd.DataFrame(talib.MINUS_DI(np.array(sts_trade.shift(3)['High']),np.array(sts_trade.shift(3)['Low']),np.array(sts_trade.shift(3)['Settle']),timeperiod = adx_days),columns=['adx_minprev_three'],index=sts_trade.index) adx_plus_shift_three = pd.DataFrame(talib.PLUS_DI(np.array(sts_trade.shift(3)['High']),np.array(sts_trade.shift(3)['Low']),np.array(sts_trade.shift(3)['Settle']),timeperiod = adx_days),columns=['adx_plusprev_three'],index=sts_trade.index) adx_min_shift_four = pd.DataFrame(talib.MINUS_DI(np.array(sts_trade.shift(4)['High']),np.array(sts_trade.shift(4)['Low']),np.array(sts_trade.shift(4)['Settle']),timeperiod = adx_days),columns=['adx_minprev_four'],index=sts_trade.index) adx_plus_shift_four = pd.DataFrame(talib.PLUS_DI(np.array(sts_trade.shift(4)['High']),np.array(sts_trade.shift(4)['Low']),np.array(sts_trade.shift(4)['Settle']),timeperiod = adx_days),columns=['adx_plusprev_four'],index=sts_trade.index) adx_min_shift_five = pd.DataFrame(talib.MINUS_DI(np.array(sts_trade.shift(5)['High']),np.array(sts_trade.shift(5)['Low']),np.array(sts_trade.shift(5)['Settle']),timeperiod = adx_days),columns=['adx_minprev_five'],index=sts_trade.index) adx_plus_shift_five = pd.DataFrame(talib.PLUS_DI(np.array(sts_trade.shift(5)['High']),np.array(sts_trade.shift(5)['Low']),np.array(sts_trade.shift(5)['Settle']),timeperiod = adx_days),columns=['adx_plusprev_five'],index=sts_trade.index) adx_min_shift_six = pd.DataFrame(talib.MINUS_DI(np.array(sts_trade.shift(6)['High']),np.array(sts_trade.shift(6)['Low']),np.array(sts_trade.shift(6)['Settle']),timeperiod = adx_days),columns=['adx_minprev_six'],index=sts_trade.index) adx_plus_shift_six = pd.DataFrame(talib.PLUS_DI(np.array(sts_trade.shift(6)['High']),np.array(sts_trade.shift(6)['Low']),np.array(sts_trade.shift(6)['Settle']),timeperiod = adx_days),columns=['adx_plusprev_six'],index=sts_trade.index) roll_max = pd.DataFrame(pd.rolling_max(sts_trade['High'],days)) roll_max.columns = ['stop_short'] roll_min = pd.DataFrame(pd.rolling_min(sts_trade['Low'],days)) roll_min.columns = ['stop_long'] atr = talib.ATR(np.array(sts_trade['High']),np.array(sts_trade['Low']),np.array(sts_trade['Settle']),timeperiod = 18) stop = sts_trade['Settle'] + atr*atr_multiplier stop_short_post = pd.DataFrame(stop) stop_short_post.columns = ['ssp'] stop = sts_trade['Settle'] - atr*atr_multiplier stop_long_post = pd.DataFrame(stop) stop_long_post.columns = ['slp'] sts_trade = pd.concat([sts_trade,adx_min_shift,adx_min,adx_plus,adx_plus_shift,adx_min_shift_two,adx_plus_shift_two,adx_min_shift_three,adx_plus_shift_three,adx_min_shift_four,adx_plus_shift_four,adx_min_shift_five,adx_plus_shift_five,adx_min_shift_six,adx_plus_shift_six,roll_max,roll_min,stop_long_post,stop_short_post,macd,macd_shift,macd_shift_one,macd_shift_two,macd_shift_three,macd_shift_four,macd_shift_five],axis=1) def short(h): if (h['adx_plusprev'] < h['adx_minprev'] and h['adx_plus'] > h['adx_min'] and h['adx_plusprev_two'] < h['adx_minprev_two'] and h['adx_plusprev_three'] < h['adx_minprev_three'] and h['adx_plusprev_four'] < h['adx_minprev_four'] and h['adx_plusprev_five'] < h['adx_minprev_five']): return h['slp'] else: return h['slp'] def long_(h): if (h['adx_plusprev'] > h['adx_minprev'] and h['adx_plus'] < h['adx_min'] and h['adx_plusprev_two'] > h['adx_minprev_two'] and h['adx_plusprev_three'] > h['adx_minprev_three'] and h['adx_plusprev_four'] > h['adx_minprev_four'] and h['adx_plusprev_five'] > h['adx_minprev_five']): return h['ssp'] else: return h['ssp'] stop_long_post = pd.DataFrame(pd.rolling_min(sts_trade['Low'],days_two)) stop_long_post.columns=['stop_long_post'] stop_short_post = pd.DataFrame(pd.rolling_max(sts_trade['High'],days_two)) stop_short_post.columns=['stop_short_post'] #stop_long_post = pd.DataFrame(sts_trade.apply(short,axis=1),columns=['stop_long_post']) #stop_short_post = pd.DataFrame(sts_trade.apply(long_,axis=1),columns=['stop_short_post']) sts_trade = pd.concat([sts_trade,stop_long_post,stop_short_post],axis=1) return sts_trade
def willR(data, inputCols, periods): curname = inputCols[0] maxname = inputCols[1] minname = inputCols[2] values = 100 * ((pd.rolling_max(data[minname], periods) - data[curname]) / (pd.rolling_max(data[maxname], periods) - pd.rolling_min(data[minname], periods))).fillna(0) return values
def plot_rolling_functions(series, window_size=128): pd.rolling_median(series,window_size).plot(label='median') pd.rolling_mean(series,window_size).plot(label='mean') pd.rolling_std(series,window_size).plot(label='std') pd.rolling_skew(series,window_size).plot(label='skew') pd.rolling_kurt(series,window_size).plot(label='kurt') pd.rolling_min(series,window_size).plot(label='min') pd.rolling_max(series,window_size).plot(label='max') plt.title('Various rolling window functions, window size %s' % (window_size)) plt.legend() plt.show()
def ichimoku(self, df_close, df_high, df_low): ''' df_ichimoku_tenkan_u, df_ichimoku_tenkan_l = indicators.channel(df_close,9) df_ichimoku_kijun_u, df_ichimoku_kijun_l = indicators.channel(df_close,26) df_senkou_a df_senkou_b_u, df_senkou_b_l = indicators.channel(df_close,52) sym_list = df_close.columns ''' timestamps = df_close.index sym_list = df_close.columns df_ichimoku_tenkan_u = copy.deepcopy(df_close) df_ichimoku_tenkan_u = df_ichimoku_tenkan_u * np.NAN df_ichimoku_tenkan_l = copy.deepcopy(df_close) df_ichimoku_tenkan_l = df_ichimoku_tenkan_l * np.NAN df_ichimoku_kijun_u = copy.deepcopy(df_close) df_ichimoku_kijun_u = df_ichimoku_kijun_u * np.NAN df_ichimoku_kijun_l = copy.deepcopy(df_close) df_ichimoku_kijun_l = df_ichimoku_kijun_l * np.NAN df_ichimoku_kijun = copy.deepcopy(df_close) df_ichimoku_kijun = df_ichimoku_kijun * np.NAN df_ichimoku_tenkan = copy.deepcopy(df_close) df_ichimoku_tenkan = df_ichimoku_tenkan * np.NAN for sym in sym_list: df_ichimoku_tenkan_u[sym] = pd.rolling_max(df_high[sym], min_periods=1, window=9) df_ichimoku_tenkan_l[sym] = pd.rolling_min(df_low[sym], min_periods=1, window=9) df_ichimoku_kijun_u[sym] = pd.rolling_max(df_high[sym], min_periods=1, window=26) df_ichimoku_kijun_l[sym] = pd.rolling_min(df_low[sym], min_periods=1, window=26) for t_stamp in timestamps: df_ichimoku_tenkan[sym].ix[t_stamp] = ( df_ichimoku_tenkan_u[sym].ix[t_stamp] + df_ichimoku_tenkan_l[sym].ix[t_stamp]) / 2 df_ichimoku_kijun[sym].ix[t_stamp] = ( df_ichimoku_kijun_u[sym].ix[t_stamp] + df_ichimoku_kijun_l[sym].ix[t_stamp]) / 2 return df_ichimoku_tenkan, df_ichimoku_kijun
def new_high(self, days=5): ''' ''' df = deepcopy(self.df) daima = self.daima df['rolling_high'] = pd.rolling_max(df.high, days) df['new_high'] = df.rolling_high = df.high.shift(-1) df['pct'] = np.where(df['new_high'], (df.open.shift(days) - df.open) / df.open, _NO_PCT) df['low_pct'] = np.where(df['new_high'], (pd.rolling_min(df.low, days) - df.open) / df.open, _NO_PCT) df['high_pct'] = np.where(df['new_high'],(pd.rolling_max(df.high, days) - df.open) / df.open, _NO_PCT) func_name = sys._getframe().f_code.co_name self._to_result(df, days, func_name) self._to_normal_distribution(df, days, func_name)
def minMaxScalerRelative(tab,wind): minn=pandas.rolling_min(tab,wind) maxx=pandas.rolling_max(tab,wind) minn[0:wind-1]=minn[wind] maxx[0:wind-1]=maxx[wind] norm=maxx-minn return (tab-minn)/norm
def newhigh(self, days=5, rolling_days=5): df = deepcopy(self.df) daima = self.daima df['rolling_high'] = pd.rolling_max(df.high.shift(-1*rolling_days), rolling_days) #今天前rolling_days天的最高 df['rolling_low'] = pd.rolling_min(df.low.shift(-1*rolling_days), rolling_days) #今天前rolling_days天的最低 df['new_high'] = df.high.shift(-1) >= df.rolling_high low_value = (pd.rolling_min(df.low.shift(-1*days), days) - df.open) / df.open high_value = (pd.rolling_max(df.high.shift(-1*days), days) - df.open) / df.open df['low_pct'] = np.where(df['new_high'], low_value , 9) df['high_pct'] = np.where(df['new_high'], high_value , 9) func_name = sys._getframe().f_code.co_name df.to_csv('files_tmp/looklow_%s_%s_before.csv' % (func_name, daima)) # 以函数名作为文件名保存 self._to_result(df, days, func_name)
def MDD(timeSeries, window): """ A maximum drawdown (MDD) is the maximum loss from a peak to a trough of a portfolio, before a new peak is attained. Maximum Drawdown (MDD) is an indicator of downside risk over a specified time period. It can be used both as a stand-alone measure or as an input into other metrics such as "Return over Maximum Drawdown" and Calmar Ratio. Maximum Drawdown is expressed in percentage terms and computed as: Read more: Maximum Drawdown (MDD) Definition """ ## Rolling_max calculates puts the maximum value seen at time t. # We # Calculate the max drawdown in the past window days for each day in the series. # Use min_periods=1 if you want to let the first 252 days data have an expanding window Roll_Max = pd.rolling_max(timeSeries, window, min_periods=1) Roll_Max = ul.fnp(Roll_Max) print Roll_Max.shape # How much we have lost compared to the maximum so dar Daily_Drawdown = timeSeries / Roll_Max - 1.0 print Daily_Drawdown.shape # Next we calculate the minimum (negative) daily drawdown in that window. # Again, use min_periods=1 if you want to allow the expanding window Max_Daily_Drawdown = pd.rolling_min(Daily_Drawdown, window, min_periods=1) Max_Daily_Drawdown = ul.fnp(Max_Daily_Drawdown) return Daily_Drawdown, Max_Daily_Drawdown
def BuildData(self,code): self.data = pd.read_csv('600218.csv',index_col='date') del self.data['open'] del self.data['low'] del self.data['volume'] del self.data['amount'] del self.data['high'] #self.__data = pd.read_csv('000001.csv') d0 = pd.read_csv('000001.csv',index_col='date') #read sh index into data self.data['refc']=d0.close[self.data.index[0]:self.data.index[-1]] #init the margin column #self.__data['margin']=np.zeros(len(self.__data)) #In=close/ref(c,1)-refc/ref(refc,1)*100 self.data['IN']=(self.data.close/self.data.close.shift(7)-self.data.refc/self.data.refc.shift(7))*100 #in_apex=(IN<REF(IN,1) AND REF(IN,1)>REF(IN,2)) ? 1,0; self.data['IN_apex']=np.zeros(len(self.data)) index = self.data.IN[self.data.IN.shift(1)>self.data.IN][self.data.IN.shift(2)<self.data.IN.shift(1)].index self.data.IN_apex[index]=1 #IN_T1 = (MAX(IN,15)<0.10 AND MIN(IN,15)>0 AND SUM(IN_apex,15)>4)) ? 1, 0 self.data['IN_T1']=np.zeros(len(self.data)) index = self.data.IN[pd.rolling_max(self.data.IN,15)<10][pd.rolling_min(self.data.IN,15)>0][pd.rolling_sum(self.data.IN_apex,15)>4].index self.data.IN_T1[index]=1 #IN_T = (IN<0 AND REF(IN,1)>0 AND SUM(IN_T1,3)>0) ? 1, 0 self.data['IN_T']=np.zeros(len(self.data)) index = self.data.IN[self.data.IN<self.data.IN.shift(1)][self.data.IN.shift(1)>0][pd.rolling_sum(self.data.IN_T1,3)>0].index self.data.IN_T[index]=1
def storage(code): try: a=ts.get_hist_data(code) except: print('{} is wrong'.format(code)) else: if a is not None: a['code']=str(code) a.sort_index(inplace=True) boll(a) a['rsi']=rsi(a) kdj(a,9,3,3) a['macd']=pd.ewma(a.close,12)-pd.ewma(a.close,26) a['ma30']=pd.rolling_mean(a.close,30) a['ma60']=pd.rolling_mean(a.close,60) a['ma90']=pd.rolling_mean(a.close,90) a['change30']=pd.rolling_std(np.gradient(a.ma30),30) for t in [5,10,20,30,60,90]: a['max'+str(t)]=pd.rolling_max(a.close,t) a['min'+str(t)]=pd.rolling_min(a.close,t) a['macd_a']=pd.ewma(a.close,12) a['macd_d']=pd.ewma(a.close,26) a['diff5']=100*(a.shift(-5).close-a.close)/a.close a['diff10']=100*(a.shift(-10).close-a.close)/a.close a['diff5_c']=a.diff5.apply(category) a['diff10_c']=a.diff10.apply(category) a.dropna() return a
def dropOutliers(df): logging.info('Dropping outliers...') size_start = len(df) # get range rolhigh = pd.rolling_max(df['high'], 5) rolmin = pd.rolling_min(df['low'], 5) df['range'] = rolhigh - rolmin df.dropna(inplace=True) # print df # get stats mean = df.range.mean() std = df.range.std() # drop outliers min_cutoff = mean - std * 2 max_cutoff = mean + std * 2 # logging.info('Dropping outliers between below {0:4f} and above {1:4f}'.format(min_cutoff, max_cutoff)) df = df[df['range'] > min_cutoff] df = df[df['range'] < max_cutoff] # logging.info('Dropped {0} rows'.format(500 - len(df))) # get stats # mean = df.range.mean() # std = df.range.std() # logging.info('{0} between {1} and {2} [{3}]'.format( # currency, # round(mean - std, 4), # round(mean + std, 4), # round(mean, 4), # )) logging.info('Outliers: {0} removed'.format(size_start - len(df))) return df
def STOK(df, n): high_n = pd.rolling_max(df['High'], n) low_n = pd.rolling_min(df['Low'], n) SOk = pd.Series(100 * (df['Close'] - low_n) / (high_n - low_n), name='SO%k' + str(n)) df = df.join(SOk) return df
def CHENOW_PLUNGER(df, n, atr_n=40): atr = ATR(df, atr_n) high = pd.Series((pd.rolling_max(df['high'], n) - df['close']) / atr, name='CPLUNGER_H' + str(n)) low = pd.Series((df['close'] - pd.rolling_min(df['low'], n)) / atr, name='CPLUNGER_L' + str(n)) return pd.concat([high, low], join='outer', axis=1)
def locate_jumps(data, z_window=10, f_window=7, maxima_window=100, significance=2): """Find the points when the B-field was stepped. Parameters ---------- data : Series of angle data, indexed by frame or time z_window : Size of noise sample Default 10. f_window : Compare these points ahead and behind to detect a jump. Default 7. maxima_window : Minimum spacing of distinct jumps. Default 100. significance: Minimum significance of a jump; in units of sigma. Default 2. Returns ------- array of positions where jumps occurred """ # Each point's z-score in the context of the preceding ones. z = (data - pd.rolling_mean(data, z_window))/pd.rolling_std(data, z_window) # f = z_{before}^2 - z_{after}^2 f = pd.rolling_sum(z.shift(-f_window)**2 - z**2, f_window) jumps = ((f == pd.rolling_max(f, maxima_window, center=True)) & \ (f > 2*f_window*significance)) print jumps.value_counts() return jumps[jumps].index.values
def get_stock_indicator(self,start,end): data =read_hdf(self.dataFile, self.symbol,where='index>=start & index <= end') data['ma5'] = pd.rolling_mean(data['Adj Close'], window=5).bfill() data['ma20'] = pd.rolling_mean(data['Adj Close'], window=20).bfill() data['ma50'] = pd.rolling_mean(data['Adj Close'], window=50).bfill() data['bol_upper'] = pd.rolling_mean(data['Adj Close'], window=20).bfill() + 2* pd.rolling_std(data['Adj Close'], 20, min_periods=20).bfill() data['bol_lower'] = pd.rolling_mean(data['Adj Close'], window=20).bfill() - 2* pd.rolling_std(data['Adj Close'], 20, min_periods=20).bfill() data['bol_bw'] = ((data['bol_upper'] - data['bol_lower'])/data['ma20'])*100 data['exma12'] = pd.ewma(data['Adj Close'], span=12).bfill() data['exma26'] = pd.ewma(data['Adj Close'], span=26).bfill() data['dif'] = data['exma12'] - data['exma26'] data['dea'] = pd.ewma(data['dif'],span=9).bfill() data['macd'] = (data['dif'] - data['dea']) * 2 #seems 百度百科对KDJ的算法介绍是错误的 data['k'] = ((data['Adj Close'] - pd.rolling_min(data['Adj Close'],window=9).bfill())/ (pd.rolling_max(data['Adj Close'],window=9).bfill()-pd.rolling_min(data['Adj Close'],window=9).bfill()))*100 data['d'] = pd.ewma(data['k'],span=3).bfill() data['j'] = 3 * data['d'] - 2 * data['k'] return data
def MDD(timeSeries, window): """ A maximum drawdown (MDD) is the maximum loss from a peak to a trough of a portfolio, before a new peak is attained. Maximum Drawdown (MDD) is an indicator of downside risk over a specified time period. It can be used both as a stand-alone measure or as an input into other metrics such as "Return over Maximum Drawdown" and Calmar Ratio. Maximum Drawdown is expressed in percentage terms and computed as: Read more: Maximum Drawdown (MDD) Definition """ ## Rolling_max calculates puts the maximum value seen at time t. # We # Calculate the max drawdown in the past window days for each day in the series. # Use min_periods=1 if you want to let the first 252 days data have an expanding window Roll_Max = pd.rolling_max(timeSeries, window, min_periods=1) Roll_Max = ul.fnp(Roll_Max) # print (Roll_Max.shape) # How much we have lost compared to the maximum so dar ## Daily_Drawdown = timeSeries/Roll_Max - 1.0 print (Daily_Drawdown.shape) # Next we calculate the minimum (negative) daily drawdown in that window. # Again, use min_periods=1 if you want to allow the expanding window Max_Daily_Drawdown = pd.rolling_min(Daily_Drawdown, window, min_periods=1) Max_Daily_Drawdown = ul.fnp(Max_Daily_Drawdown) return Daily_Drawdown, Max_Daily_Drawdown
def calc_iter_probs(ii): df_iter = fdf.loc[ii].copy() df_iter['dip'] = mc_d['dip_samp'][ii] df_iter['Ddot'] = mc_d['Ddot_samp'][ii] # Generate EQ sample/sequence from F(M) dist. m_vec = np.linspace(5, mc_d['max_M'][ii], num=1000) fm_vec = eqs.F_char(m_vec, Mc=Mc, char_M=mc_d['char_M'][ii]) M_samp = eqs.sample_from_pdf(m_vec, fm_vec, n_eq_samp) Mo_samp = eqs.calc_Mo_from_M(M_samp) # Make time series of earthquakes, including no eq years recur_int = eqs.calc_recurrence_interval(Mo=Mo_samp, dip=mc_d['dip_samp'][ii], slip_rate=mc_d['Ddot_samp'][ii], L=params['L_km'], z=params['z_km']) cum_yrs = eqs.calc_cumulative_yrs(recur_int) eq_series = eqs.make_eq_time_series(M_samp, cum_yrs) # calculate probability of observing EQ in time_window for t in time_window: roll_max = pd.rolling_max(eq_series, t) df_iter[t] = (eqs.get_probability_above_value(roll_max, min_M_list) * mc_d['dip_frac']) # calculate histgrams of recurrence intervals rec_int_counts_df = rec_int_df.loc[ii].copy() for mm in np.array(min_M_list): ints = np.diff( np.where(eq_series >= mm) ) rec_int_counts_df.loc[mm] = np.histogram(ints, bins=rec_int_bins)[0] return df_iter, rec_int_counts_df
def which_ma_up_and_gtma(self, which_ma=[], ma='', days=5): df = deepcopy(self.df) daima = self.daima # first all true df['up1'] = df.high>df.low df['up2'] = df.high>df.low df['up3'] = df.high>df.low df['up4'] = df.high>df.low if 'ma5' in which_ma: df['up1'] = df['ma5'].shift(-1) > df['ma5'].shift(-2) if 'ma10' in which_ma: df['up2'] = df['ma10'].shift(-1) > df['ma10'].shift(-2) if 'ma20' in which_ma: df['up3'] = df['ma20'].shift(-1) > df['ma20'].shift(-2) if 'ma40' in which_ma: df['up4'] = df['ma40'].shift(-1) > df['ma40'].shift(-2) df['gt_ma'] = df.low.shift(-1) > df[ma].shift(-1) df['all'] = df.up1 & df.up2 & df.up3 & df.up4 & df.gt_ma low_value = (pd.rolling_min(df.low.shift(-1*days), days) - df.open) / df.open high_value = (pd.rolling_max(df.high.shift(-1*days), days) - df.open) / df.open df['low_pct'] = np.where(df['all'], low_value , 9) df['high_pct'] = np.where(df['all'], high_value , 9) func_name = sys._getframe().f_code.co_name self._to_result(df, days, func_name)
def UI(prices, timeperiod=14): """ 说明: Ulcer Index是由Peter Martin 1987年提出的测度证券市场风险的波动率指标, 、先求出过去n日每日收盘价相对于n日内最高价的变动率R, R平方的平均值开二次方后得到Ulcer指标。 计算方法: R=(CLOSE-MAX(CLOSE,N))/MAX(CLOSE,N)*100 UI=SQRT(SUMSQ(R,N)/N) :param prices: :param timeperiod: :return: """ assert prices is not None _assert_greater_or_equal(len(prices), timeperiod) assert isinstance(timeperiod, int) # assert isinstance(timeperiod2, int) df_price = prices.copy() df_price = df_price.sort_index(ascending=True) max_close_n = None if pd.__version__ < '0.18.0': max_close_n = pd.rolling_max(df_price['close'], timeperiod) else: max_close_n = df_price['close'].rolling(timeperiod).max() r = (df_price['close'] - max_close_n) / max_close_n * 100 ui = None if pd.__version__ < '0.18.0': ui = pd.rolling_sum(r ** 2, timeperiod) / timeperiod else: ui = (r ** 2).rolling(timeperiod).sum() / timeperiod return ui
def find_extrema(x, y, window=5, span_points=25): #df = pd.DataFrame({'x': mpl.dates.date2num(x), 'y': y}) df = pd.DataFrame({'x': range(len(x)), 'y': y}) span = span_points / len(df) lo = stats.loess('y~x', df, span=span, na_action=stats.na_exclude) # we have to use predict(lo) instead of lo.rx2('fitted') here, the latter # doesn't not include NAs fitted = pd.Series(pandas2ri.ri2py(stats.predict(lo)), index=df.index) max_ = pd.rolling_max(fitted, window, center=True) min_ = pd.rolling_min(fitted, window, center=True) df['fitted'] = fitted df['max'] = max_ df['min'] = min_ delta = max_ - fitted highs = df[delta <= 0] delta = min_ - fitted lows = df[delta >= 0] #globals()['fe_df'] = df #globals()['x'] = x #globals()['y'] = y #globals()['lows'] = lows #globals()['highs'] = highs return fitted, lows, highs
def stochastic_oscillator(df, periods_k, periods_d): close = df.midclose.values high = pd.rolling_max(df.midhigh, periods_k, how='max') low = pd.rolling_min(df.midlow, periods_k, how='min') k = ((close - low) / (high - low)) * 100 d = pd.rolling_mean(k, periods_d) return d
def get_kdj(code): stock_data = ts.get_k_data(code) # kdj low_list = pd.rolling_min(stock_data['low'], 9) low_list.fillna(value=pd.expanding_min(stock_data['low']), inplace=True) high_list = pd.rolling_max(stock_data['high'], 9) high_list.fillna(value=pd.expanding_max(stock_data['high']), inplace=True) rsv = (stock_data['close'] - low_list) / (high_list - low_list) * 100 stock_data['kdj_k'] = pd.ewma(rsv, com=2) stock_data['kdj_d'] = pd.ewma(stock_data['kdj_k'], com=2) stock_data['kdj_j'] = 3 * stock_data['kdj_k'] - 2 * stock_data['kdj_d'] # 用今天的j值和昨天比较 kdj_j = stock_data['kdj_j'] yesterdayJ = kdj_j[kdj_j.size - 2] todayJ = kdj_j[kdj_j.size - 1] kdj_k = stock_data['kdj_k'] todayK = kdj_k[kdj_k.size - 1] # 如果今天的j值大于昨天的j值才继续后面的逻辑 if (todayJ > yesterdayJ and todayK < float(20)): # 计算价格5日百分比 stock_data = stock_data[stock_data.date > str(dc.get_the_day_before_today(1))] stock_data['kdj_ok'] = 1 else: stock_data = stock_data[stock_data.date > str(dc.get_the_day_before_today(1))] stock_data['kdj_ok'] = 0 return stock_data
def boll(a): a['std20']=pd.rolling_std(a.ma20,20) a['boll_up']=a.close+2*a.std20 a['boll_down']=a.close-2*a.std20 a['boll_range']=(pd.rolling_max(a.boll_up,20)-pd.rolling_min(a.boll_down,20))/pd.rolling_mean(a.ma20,20) a['boll_range_p']=a.boll_range.pct_change() a['boll_range_p20']=a.boll_range.pct_change(periods=20)
def stoch_rsi(df, period): rsi_value = rsi(df, period=period) stoch_rsi_value = (rsi_value - pd.rolling_min(rsi_value, period)) / \ (pd.rolling_max(rsi_value, period) - pd.rolling_min(rsi_value, period)) return stoch_rsi_value
def KDJ(self, P1, P2): temp = pd.read_csv( r"C:\\Dell\\internship\\CICC\\Barra\\Database\\Tech\\KDJ.csv") temp_c = (self.data.iloc[:, :, 2]).T temp_h = (self.data.iloc[:, :, 4]).T temp_l = (self.data.iloc[:, :, 6]).T date = temp.index.values[-1] start = self.data.items.get_loc[date] + 1 end = len(self.data) for i in range(start, end): DCloP = temp_c.iloc[i - 40:i, :] DLP = temp_l.iloc[i - 40:i, :] DHP = temp_h.iloc[i - 40:i, :] lv = pd.rolling_min(DLP, 5, 1) hv = pd.rolling_max(DHP, 5, 1) rsv = 100 * (DCloP - lv) / (hv - lv) k1 = (rsv.iloc[len(rsv) - 2, :] * (P1 - 1) + rsv.iloc[len(rsv) - 1, :]) / P1 k2 = (rsv.iloc[len(rsv) - 3, :] * (P1 - 1) + rsv.iloc[len(rsv) - 2, :]) / P1 d = k2 * (P2 - 1) + k1 / P2 j = k1 * 3 - d * 2 temp.loc[self.data.items.values[i], :] = j temp.to_csv( r"C:\\Dell\\internship\\CICC\\Barra\\Database\\Tech\\KDJ.csv")
def STOK(df, n): SOk = pd.Series((df['Adj. Close'] - pd.rolling_min(df['Adj. Low'], n)) / (pd.rolling_max(df['Adj. High'], n) - pd.rolling_min(df['Adj. Low'], n)), name='SO%k') df['SOk'] = SOk return df
def stoch(hlc, n_fastK=14, n_fastD=3, n_slowD=3, ma_type='sma', bounded=True, smooth=1): ''' Stochastic Oscillator ''' high, low, close = utils.safe_hlc(hlc) if bounded: hmax = pd.rolling_max(high, n_fastK) lmin = pd.rolling_min(low, n_fastK) else: raise NotImplementedError() num = close - lmin den = hmax - lmin mafunc = ma.get_ma(ma_type) num_ma = mafunc(num, smooth) den_ma = mafunc(den, smooth) fastK = num_ma / den_ma fastK[np.isnan(fastK)] = 0.5 fastD = mafunc(fastK, n_fastD) slowD = mafunc(fastD, n_slowD) return pd.DataFrame(dict(fastK=fastK, fastD=fastD, slowD=slowD), index=hlc.index)
def attr(p): k = p.dropna() k['dir'] = k.Close-k.Open k['bindar'] =(k.Close-k.Open)/(abs(k.Close-k.Open)+0.0001)+1 k['bindar'] = round(k.bindar/2)*2 k['ret'] = ((k.Close.shift(-10)-k.Close)/k.Close)*100 k['nret'] = norm1(k.ret) k['highspike'] = k.High - k.Open * k.bindar/2 + (k.bindar-2)/2 * k.Close k['lowspike'] = k.Close * k.bindar/2 - (k.bindar-2)/2 * k.Open - k.Low k['normdir'] = norm1(k['highspike']/(k['lowspike']+0.000001)) k['normhs'] = norm1(k['dir']/(k['highspike']+0.000001)) k['normls'] = norm1(k['dir']/(k['lowspike']+0.000001)) k['avg'] = pd.rolling_mean(k.Close,window =14) k['avgdif'] = k.avg-k.avg.shift(1) k['avgdif'] = norm1(k.avgdif) k['mp'] = (k.High+k.Low)/2 k['im'] = 1*(k.mp-(pd.rolling_min(k.Low,window = 20)))/((pd.rolling_max(k.High,window=20))-(pd.rolling_min(k.Low,window = 20))) k['ft'] = 0.5*np.log((1+k.im)/(1-k.im)) k['tt'] = norm1(k['tickqty']/k['tickqty'].shift(1)) k = k.dropna() k.fillna(0) return k
def results(self, data_frame): try: data_frame[self.value] = pd.rolling_max(data_frame[self.data], self.period) except KeyError: data_frame[self.value] = np.nan return data_frame
def kdj(self, start, stop): close = [] high = [] low = [] for i in range(start, stop): close.append(self.stocks[i].close) high.append(self.stocks[i].high) low.append(self.stocks[i].low) lowest = pandas.rolling_min(pandas.Series(low), 9) highest = pandas.rolling_max(pandas.Series(high), 9) closedp = pandas.Series(close) rsv = ((closedp - lowest) / (highest - lowest)) * 100 rsv[0] = 50 k = pandas.ewma(rsv, com=2, adjust=False) k[0] = 50 d = pandas.ewma(k, com=2, adjust=False) j = 3 * k - 2 * d for i in range(start, stop): self.stocks[i].k = k[i - start] self.stocks[i].d = d[i - start] self.stocks[i].j = j[i - start]
def get_high_low(df, n): df.sort_values(by=['tradeDate'], ascending=True, inplace=True) df['newhigh'] = df['highestPrice'].shift(1) df['newlow'] = df['lowestPrice'].shift(1) df['nhigh'] = pd.rolling_max(df['newhigh'], window=n, min_periods=1) df['nlow'] = pd.rolling_min(df['newlow'], window=n, min_periods=1) return df
def featHiLow(dData, lLookback=20, b_human=False ): ''' @summary: 1 represents a high for the lookback -1 represents a low @param dData: Dictionary of data to use @param lLookback: Number of days to look in the past @param b_human: if true return dataframe to plot @return: DataFrame array containing values ''' if b_human: for sym in dData['close']: x=1000/dData['close'][sym][0] dData['close'][sym]=dData['close'][sym]*x return dData['close'] dfPrice = dData['close'] #Find Max for each price for lookback maxes = pand.rolling_max(dfPrice, lLookback, 1) #Find Min mins = pand.rolling_min(dfPrice, lLookback, 1) #Find Range ranges = maxes - mins #Calculate (price - min) * 2 / range -1 dfRet = (((dfPrice-mins)*2)/ranges)-1 return dfRet
def computeEnvelope(arrData, nWindow, nMinPeriods=None): """compute upper and lower envelope for given data""" arrUpperEnvelope = pd.rolling_max(pd.Series(arrData), window=nWindow, min_periods=nMinPeriods, center=True) arrLowerEnvelope = pd.rolling_min(pd.Series(arrData), window=nWindow, min_periods=nMinPeriods, center=True) return arrUpperEnvelope, arrLowerEnvelope
def breakout(price, lookback, smooth=None): """ :param price: The price or other series to use (assumed Tx1) :type price: pd.DataFrame :param lookback: Lookback in days :type lookback: int :param lookback: Smooth to apply in days. Must be less than lookback! Defaults to smooth/4 :type lookback: int :returns: pd.DataFrame -- unscaled, uncapped forecast With thanks to nemo4242 on elitetrader.com for vectorisation """ if smooth is None: smooth=max(int(lookback/4.0), 1) assert smooth<lookback roll_max = pd.rolling_max(price, lookback, min_periods=int(min(len(price), np.ceil(lookback/2.0)))) roll_min = pd.rolling_min(price, lookback, min_periods=int(min(len(price), np.ceil(lookback/2.0)))) roll_mean = (roll_max+roll_min)/2.0 ## gives a nice natural scaling output = 40.0*((price - roll_mean) / (roll_max - roll_min)) smoothed_output = pd.ewma(output, span=smooth, min_periods=np.ceil(smooth/2.0)) return smoothed_output
def find_extrema(se, window=5, span_points=25): #df = pd.DataFrame({'x': mpl.dates.date2num(x), 'y': y}) x=se.index y=se df = pd.DataFrame({'x': x, 'y': y}) span = span_points/len(df) lo = stats.loess('y~x', df, span=span, na_action=stats.na_exclude) # we have to use predict(lo) instead of lo.rx2('fitted') here, the latter # doesn't not include NAs fitted = pd.Series(pandas2ri.ri2py(stats.predict(lo)), index=df.index) max_ = pd.rolling_max(fitted, window, center=True) min_ = pd.rolling_min(fitted, window, center=True) df['fitted'] = fitted df['max'] = max_ df['min'] = min_ delta = max_ - fitted highs = df[delta<=0] delta = min_ - fitted lows = df[delta>=0] #globals()['fe_df'] = df #globals()['x'] = x #globals()['y'] = y #globals()['lows'] = lows #globals()['highs'] = highs return fitted, lows, highs
def sto_d(df, n): high_n = pd.rolling_max(df['High'], n) low_n = pd.rolling_min(df['Low'], n) SOk = pd.Series( 100 * (df['Close'] - low_n) / (high_n - low_n), name = 'SO%k') SOd = pd.Series(pd.rolling_mean(SOk, 3), name = 'SO%d' + str(n)) df = df.join(SOd) return df
def min_max_mean(candles, window_length): closings = candles.midclose.values[1:] - candles.midclose.values[:-1] closings = np.insert(closings, 0, np.nan) mmm = pd.rolling_mean((pd.rolling_max(closings, window_length) - \ pd.rolling_min(closings, window_length)), window_length) return mmm
def featDrawDown(dData, lLookback=30, b_human=False): ''' @summary: Calculate Drawdown for the stock @param dData: Dictionary of data to use @param lLookback: Days to look back @return: DataFrame array containing values @param b_human: if true return dataframe to plot @warning: Drawdown and RunUp can depend heavily on sample period ''' dfPrice = dData['close'] #''' Feature DataFrame will be 1:1, we can use the price as a template ''' dfRet = pand.DataFrame(index=dfPrice.index, columns=dfPrice.columns, data=np.zeros(dfPrice.shape)) dfMax = pand.rolling_max(dfPrice, lLookback) return (dfMax - dfPrice) / dfMax if b_human: for sym in dData['close']: x = 1000 / dData['close'][sym][0] dData['close'][sym] = dData['close'][sym] * x return dData['close'] return dfRet
def featStochastic(dData, lLookback=14, bFast=True, lMA=3, b_human=False): ''' @summary: Calculate stochastic oscillator - indicates what range of recent low-high spread we are in. @param dData: Dictionary of data to use @param bFast: If false, do slow stochastics, 3 day MA, if not use fast, no MA @param b_human: if true return dataframe to plot @return: DataFrame array containing feature values ''' dfLow = dData['low'] dfHigh = dData['high'] dfPrice = dData['close'] #''' Loop through stocks ''' dfLows = pand.rolling_min(dfLow, lLookback) dfHighs = pand.rolling_max(dfHigh, lLookback) dfStoch = (dfPrice - dfLows) / (dfHighs - dfLows) #''' For fast we just take the stochastic value, slow we need 3 day MA ''' if not bFast: dfStoch = pand.rolling_mean(dfStoch, lMA) if b_human: for sym in dData['close']: x = 1000 / dData['close'][sym][0] dData['close'][sym] = dData['close'][sym] * x return dData['close'] return dfStoch
def sen(data, periods=9): t = pd.rolling_max( data['Adjusted Close'], window=periods) t += pd.rolling_min( data['Adjusted Close'], window=periods) t /= 2. return t
def calculate(self): col = '52-Week-%s' % self.col if self.col == 'High': self.df[col] = pd.rolling_max(self.df['Adj High'], 365) elif self.col == 'Low': self.df[col] = pd.rolling_min(self.df['Adj Low'], 365) return self.df
def rolling_functions_tests(p, d): # Old-fashioned rolling API assert_eq(pd.rolling_count(p, 3), dd.rolling_count(d, 3)) assert_eq(pd.rolling_sum(p, 3), dd.rolling_sum(d, 3)) assert_eq(pd.rolling_mean(p, 3), dd.rolling_mean(d, 3)) assert_eq(pd.rolling_median(p, 3), dd.rolling_median(d, 3)) assert_eq(pd.rolling_min(p, 3), dd.rolling_min(d, 3)) assert_eq(pd.rolling_max(p, 3), dd.rolling_max(d, 3)) assert_eq(pd.rolling_std(p, 3), dd.rolling_std(d, 3)) assert_eq(pd.rolling_var(p, 3), dd.rolling_var(d, 3)) # see note around test_rolling_dataframe for logic concerning precision assert_eq(pd.rolling_skew(p, 3), dd.rolling_skew(d, 3), check_less_precise=True) assert_eq(pd.rolling_kurt(p, 3), dd.rolling_kurt(d, 3), check_less_precise=True) assert_eq(pd.rolling_quantile(p, 3, 0.5), dd.rolling_quantile(d, 3, 0.5)) assert_eq(pd.rolling_apply(p, 3, mad), dd.rolling_apply(d, 3, mad)) with ignoring(ImportError): assert_eq(pd.rolling_window(p, 3, 'boxcar'), dd.rolling_window(d, 3, 'boxcar')) # Test with edge-case window sizes assert_eq(pd.rolling_sum(p, 0), dd.rolling_sum(d, 0)) assert_eq(pd.rolling_sum(p, 1), dd.rolling_sum(d, 1)) # Test with kwargs assert_eq(pd.rolling_sum(p, 3, min_periods=3), dd.rolling_sum(d, 3, min_periods=3))
def updatingMoneyWave(highp, lowp, closep, nextMWPrice = False): if len(closep) > 10: # slowk, slowd = tb.STOCH(highp, lowp, closep, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=1, slowd_matype=0) lowest, highest = pd.rolling_min(lowp, 5), pd.rolling_max(highp, 5) stoch = 100 * (closep - lowest) / (highest - lowest) # if nextMWPrice: MWhigh = 80 MWlow = 20 slowk = pd.rolling_mean(stoch, 3)[-1] if slowk > MWhigh: newPrice = ((highest[-1]-lowest[-1])*(((MWhigh*3)-stoch[-1]-stoch[-2])/100)+lowest[-1]) print 'Buy below ' print newPrice if nextMWPrice: return newPrice elif slowk < MWlow: newPrice = ((highest[-1]-lowest[-1])*(((MWlow*3)-stoch[-1]-stoch[-2])/100)+lowest[-1]) print 'Buy above ' print newPrice if nextMWPrice: return newPrice if nextMWPrice: return 0 # preStoch = ((MW*3) - slowd[-1] - slowd[-2])/100 # newPrice = ((max(highp[-4:]) - min(lowp[-4:]))*preStoch)+min(lowp[-4:]) return slowk # Throw exception? return (None, None)
def amplitude_range(df): period_list = [5, 10, 20, 40] for i in period_list: name = 'ampr' + str(i) df[name] = (pd.rolling_max(df['high'], i) - pd.rolling_min(df['low'], i)) / df['close'].shift(i + 1) return df
def calc_iter_probs(iter): df_iter = fdf.loc[iter].copy() df_iter['dip'] = mc_d['dip_samp'][iter] df_iter['Ddot'] = mc_d['Ddot_samp'][iter] # Generate EQ sample/sequence from F(M) dist. m_vec = np.linspace(5, mc_d['max_M'][iter], num=1000) fm_vec = eqs.F(m_vec, Mc=Mc) M_samp = eqs.sample_from_pdf(m_vec, fm_vec, n_eq_samp) Mo_samp = eqs.calc_Mo_from_M(M_samp) # Make time series of earthquakes, including no eq years recur_int = eqs.calc_recurrence_interval(Mo=Mo_samp, dip=mc_d['dip_samp'][iter], slip_rate=mc_d['Ddot_samp'][iter], L=params['L_km'], z=params['z_km']) cum_yrs = eqs.calc_cumulative_yrs(recur_int) eq_series = eqs.make_eq_time_series(M_samp, cum_yrs) # calculate probability of observing EQ in time_window for t in time_window: roll_max = pd.rolling_max(eq_series, t) df_iter[t] = (eqs.get_probability_above_value(roll_max, min_M_list) * mc_d['dip_frac']) # calculate histgrams of recurrence intervals rec_int_counts_df = rec_int_df.loc[iter].copy() for mm in np.array(min_M_list): ints = np.diff( np.where(eq_series >= mm) ) rec_int_counts_df.loc[mm] = np.histogram(ints, bins=rec_int_bins)[0] return df_iter, rec_int_counts_df
def featHiLow(dData, lLookback=20, b_human=False): ''' @summary: 1 represents a high for the lookback -1 represents a low @param dData: Dictionary of data to use @param lLookback: Number of days to look in the past @param b_human: if true return dataframe to plot @return: DataFrame array containing values ''' if b_human: for sym in dData['close']: x = 1000 / dData['close'][sym][0] dData['close'][sym] = dData['close'][sym] * x return dData['close'] dfPrice = dData['close'] #Find Max for each price for lookback maxes = pand.rolling_max(dfPrice, lLookback, 1) #Find Min mins = pand.rolling_min(dfPrice, lLookback, 1) #Find Range ranges = maxes - mins #Calculate (price - min) * 2 / range -1 dfRet = (((dfPrice - mins) * 2) / ranges) - 1 return dfRet
def rolling_functions_tests(p, d): # Old-fashioned rolling API assert_eq(pd.rolling_count(p, 3), dd.rolling_count(d, 3)) assert_eq(pd.rolling_sum(p, 3), dd.rolling_sum(d, 3)) assert_eq(pd.rolling_mean(p, 3), dd.rolling_mean(d, 3)) assert_eq(pd.rolling_median(p, 3), dd.rolling_median(d, 3)) assert_eq(pd.rolling_min(p, 3), dd.rolling_min(d, 3)) assert_eq(pd.rolling_max(p, 3), dd.rolling_max(d, 3)) assert_eq(pd.rolling_std(p, 3), dd.rolling_std(d, 3)) assert_eq(pd.rolling_var(p, 3), dd.rolling_var(d, 3)) # see note around test_rolling_dataframe for logic concerning precision assert_eq(pd.rolling_skew(p, 3), dd.rolling_skew(d, 3), check_less_precise=True) assert_eq(pd.rolling_kurt(p, 3), dd.rolling_kurt(d, 3), check_less_precise=True) assert_eq(pd.rolling_quantile(p, 3, 0.5), dd.rolling_quantile(d, 3, 0.5)) assert_eq(pd.rolling_apply(p, 3, mad), dd.rolling_apply(d, 3, mad)) assert_eq(pd.rolling_window(p, 3, win_type='boxcar'), dd.rolling_window(d, 3, win_type='boxcar')) # Test with edge-case window sizes assert_eq(pd.rolling_sum(p, 0), dd.rolling_sum(d, 0)) assert_eq(pd.rolling_sum(p, 1), dd.rolling_sum(d, 1)) # Test with kwargs assert_eq(pd.rolling_sum(p, 3, min_periods=3), dd.rolling_sum(d, 3, min_periods=3))
def featStochastic( dData, lLookback=14, bFast=True, lMA=3, b_human=False ): ''' @summary: Calculate stochastic oscillator - indicates what range of recent low-high spread we are in. @param dData: Dictionary of data to use @param bFast: If false, do slow stochastics, 3 day MA, if not use fast, no MA @param b_human: if true return dataframe to plot @return: DataFrame array containing feature values ''' dfLow = dData['low'] dfHigh = dData['high'] dfPrice = dData['close'] #''' Loop through stocks ''' dfLows = pand.rolling_min(dfLow, lLookback) dfHighs = pand.rolling_max(dfHigh, lLookback) dfStoch = (dfPrice - dfLows) / (dfHighs - dfLows) #''' For fast we just take the stochastic value, slow we need 3 day MA ''' if not bFast: dfStoch = pand.rolling_mean(dfStoch, lMA) if b_human: for sym in dData['close']: x=1000/dData['close'][sym][0] dData['close'][sym]=dData['close'][sym]*x return dData['close'] return dfStoch
def stochastic(self, df_close, df_high, df_low, n): sym_list = df_close.columns timestamps = df_close.index columns = ['high','low','close','hh','ll','stoch'] df_symstoch = pd.DataFrame(index=df_close.index,columns = columns) df_symstoch = df_symstoch.fillna(0.00) df_stoch = copy.deepcopy(df_close) df_stoch = df_stoch.fillna(0.0) for sym in sym_list: df_symstoch['close'] = df_close[sym] df_symstoch['high'] = df_high[sym] df_symstoch['low'] = df_low[sym] df_symstoch['hh'] = pd.rolling_max(df_high[sym],min_periods=1,window=n) df_symstoch['ll'] = pd.rolling_min(df_low[sym],min_periods=1,window=n) for t_stamp in range(0,len(timestamps)): if t_stamp >= n-1: df_symstoch['stoch'].ix[t_stamp] = ((df_symstoch['close'].ix[t_stamp] - df_symstoch['ll'].ix[t_stamp])/(df_symstoch['hh'].ix[t_stamp] - df_symstoch['ll'].ix[t_stamp]))*100 df_stoch[sym] = df_symstoch['stoch'] df_stoch.to_csv('./debug/df_stoch.csv') return df_stoch
def filter_rule(stock2read, stock2save, n): file_location_csv = str(stock2read) + '.csv' df = pd.read_csv(file_location_csv, index_col = 'Dates', parse_dates = True) print df.head() df['Rolling_max'] = pd.rolling_max(df['Last_price'], int(n)) df.to_csv(str(stock2save) + '.csv') df[['Open', 'Last_price', 'Rolling_max']].plot() plt.show()
def FISHER(df, win, smooth_p = 0.7, smooth_i = 0.7): roll_high = pd.rolling_max(df.high, win) roll_low = pd.rolling_min(df.low, win) price_loc = (df.close - roll_low)/(roll_high - roll_low) * 2.0 - 1 sm_price = pd.Series(pd.ewma(price_loc, com = 1.0/smooth_p - 1, adjust = False), name = 'FISHER_P') fisher_ind = 0.5 * np.log((1 + sm_price)/(1 - sm_price)) sm_fisher = pd.Series(pd.ewma(fisher_ind, com = 1.0/smooth_i - 1, adjust = False), name = 'FISHER_I') return pd.concat([sm_price, sm_fisher], join='outer', axis=1)
def rollingStats(self, selectCol = [], splitCol=None, sepCol=None, startTime=None, endTime=None, window=60, quantile=0.1, freq='10s', min_periods=5 ): df = self.dfSetup() ## Selects a list of columns to use and splits a column into single type if it contains more than one # eg. if a file contains multiple sensor readings if (len(selectCol) > 0): dfSub = df[selectCol] else: dfSub = df if (splitCol and sepCol): dfSub = dfSub[dfSub[splitCol] == sepCol] ## Converts datetime column to datatime object index, then use it to create time slices # Time format '2015-10-17 09:00:00' May use the dfOther to use other data frames if (startTime and endTime): dfSub = dfSub[ startTime : endTime ] else: dfSub = dfSub if (splitCol): dfSub = dfSub.drop(splitCol, axis=1) # Remove columns used to split entries valueName = dfSub.columns.values[0] outList = [] counts = pd.rolling_count(dfSub,window,freq=freq).rename(columns = {valueName:'rolling_counts'}) outList.append(counts) means = pd.rolling_mean(dfSub, window, min_periods=min_periods, freq=freq).rename(columns = {valueName:'rolling_mean'}) outList.append(means) rms = np.sqrt(pd.rolling_mean(dfSub**2, window, min_periods=min_periods, freq=freq).rename(columns = {valueName:'rolling_rms'}) ) outList.append(rms) medians = pd.rolling_median(dfSub, window, min_periods=min_periods, freq=freq).rename(columns = {valueName:'rolling_median'}) outList.append(medians) stds = pd.rolling_std(dfSub, window, min_periods=min_periods, freq=freq).rename(columns = {valueName:'rolling_std'}) outList.append(stds) mins = pd.rolling_min(dfSub, window, min_periods=min_periods, freq=freq).rename(columns = {valueName:'rolling_min'}) outList.append(mins) maxs = pd.rolling_max(dfSub, window, min_periods=min_periods, freq=freq).rename(columns = {valueName:'rolling_max'}) outList.append(maxs) quants = pd.rolling_quantile(dfSub, window, quantile, min_periods=min_periods, freq=freq).rename(columns = {valueName:'rolling_quantile'}) outList.append(quants) dfOut = pd.concat(outList, axis=1) return dfOut