def remove(self, path):
     s = HDFStore(self.path)
     if path in s:
         print("removing %s" % path)
         s.remove(path)
         s.flush(fsync=True)
     s.close()
Exemple #2
0
 def remove(self, path):
     s = HDFStore(self.path)
     if path in s:
         print("removing %s" % path)
         s.remove(path)
         s.flush(fsync=True)
     s.close()
 def _put(self, path, obj):
     s = HDFStore(self.path)
     if path in s:
         print("updating %s" % path)
         s.remove(path)
         s.close()
     s = HDFStore(self.path)
     s[path] = obj
     s.flush(fsync=True)
     s.close()
Exemple #4
0
 def _put(self, path, obj):
     s = HDFStore(self.path)
     if path in s:
         print("updating %s" % path)
         s.remove(path)
         s.close()
     s = HDFStore(self.path)
     s[path] = obj
     s.flush(fsync=True)
     s.close()
Exemple #5
0
 def to_frame_hdf(self, store_path, store_key, df_cb=None, max_msg=None,
                  usecols=None, chunk_cnt=CHUNK_CNT, show_prog=True):
     store = HDFStore(store_path, 'w')
     df = self._to_frame(usecols, chunk_cnt, show_prog)
     df['msg'] = df['msg'].apply(lambda m: m.encode('utf8'))
     if df_cb is not None:
         df_cb(df)
     min_itemsize = {'kind': 20, 'msg': 255}
     if max_msg is not None:
         min_itemsize['msg'] = max_msg
     store.put(store_key, df, format='table', min_itemsize=min_itemsize)
     store.flush()
     store.close()
Exemple #6
0
 def to_frame_hdf(self, store_path, store_key, df_cb=None, max_msg=None,
                  usecols=None, chunk_cnt=CHUNK_CNT):
     """Convert to Pandas DataFrame and save to HDF then returns
     HDFStore."""
     store = HDFStore(store_path, 'w')
     _c = self._to_frame_prop('to_frame_hdf', False)
     for df in self._to_frame_gen(_c, usecols, chunk_cnt):
         min_itemsize = {'kind': 20, 'msg': 255}
         # pytables not support unicode for now
         df['msg'] = df['msg'].apply(lambda m: m.encode('utf8'))
         if df_cb is not None:
             df_cb(df)
         if max_msg is not None:
             min_itemsize['msg'] = max_msg
         store.append(store_key, df, format='table',
                      min_itemsize=min_itemsize)
     store.flush()
     store.close()
     _c.pg.done()
Exemple #7
0
    return conn.cursor(cursor_factory=DictCursor)


if __name__ == '__main__':
    pre_cursor = cursor('pre')
    post_cursor = cursor('post')

    sql = 'SELECT x, y, z, value FROM points'''

    # Get data in two threads to speed things up
    pre_t = Thread(target=pre_cursor.execute, args=(sql,))
    pre_t.start()
    post_t = Thread(target=post_cursor.execute, args=(sql,))
    post_t.start()
    pre_t.join()
    post_t.join()


    # Create data frames
    pre = DataFrame.from_records([dict(row) for row in pre_cursor])
    post = DataFrame.from_records([dict(row) for row in post_cursor])

    # Store data frame in HDF5 data store
    store_file = 'points.h5'
    store = HDFStore(store_file)
    store['pre'] = pre
    store['post'] = post
    store.flush()

    print('Data stored at {}'.format(store_file))
Exemple #8
0
    conn = psycopg2.connect(database='points_{}'.format(step))
    return conn.cursor(cursor_factory=DictCursor)


if __name__ == '__main__':
    pre_cursor = cursor('pre')
    post_cursor = cursor('post')

    sql = 'SELECT x, y, z, value FROM points' ''

    # Get data in two threads to speed things up
    pre_t = Thread(target=pre_cursor.execute, args=(sql, ))
    pre_t.start()
    post_t = Thread(target=post_cursor.execute, args=(sql, ))
    post_t.start()
    pre_t.join()
    post_t.join()

    # Create data frames
    pre = DataFrame.from_records([dict(row) for row in pre_cursor])
    post = DataFrame.from_records([dict(row) for row in post_cursor])

    # Store data frame in HDF5 data store
    store_file = 'points.h5'
    store = HDFStore(store_file)
    store['pre'] = pre
    store['post'] = post
    store.flush()

    print('Data stored at {}'.format(store_file))