def test_barplot_stacked(df_fruits):
    "Test for stacked Barplot"

    # Create Scatterplot:
    arguments = dict(
        ylabel="Price per Unit [€]",
        title="Fruit prices per Year",
        stacked=True,
        alpha=0.6,
        show_figure=False,
    )

    p_bar = df_fruits.plot_bokeh(kind="bar", **arguments)
    p_bar_accessor = df_fruits.plot_bokeh.bar(**arguments)

    p_bar_pandas_backend = df_fruits.plot(kind="bar", **arguments)
    p_bar_accessor_pandas_backend = df_fruits.plot.bar(**arguments)

    # Output plot as HTML:
    output = pandas_bokeh.row([p_bar, p_bar_accessor])
    with open(os.path.join(DIRECTORY, "Plots", "Barplot_stacked.html"),
              "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
Exemple #2
0
def test_basic_lineplot_pyspark(spark):
    """Test for basic lineplot with Pyspark"""

    # Create basic lineplot:
    np.random.seed(42)
    df = pd.DataFrame(
        {
            "Google": np.random.randn(1000) + 0.2,
            "Apple": np.random.randn(1000) + 0.17
        },
        index=pd.date_range("1/1/2000", periods=1000),
    )
    df.index.name = "Date"
    df = df.cumsum()
    df = df + 50
    df = spark.createDataFrame(df.reset_index())
    p_basic_lineplot = df.plot_bokeh(kind="line", x="Date", show_figure=False)
    p_basic_lineplot_accessor = df.plot_bokeh.line(x="Date", show_figure=False)

    # Output plot as HTML:
    output = pandas_bokeh.row([p_basic_lineplot, p_basic_lineplot_accessor])
    with open(os.path.join(directory, "Plots", "Basic_lineplot_PySpark.html"),
              "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
def test_pointplot():
    "Test for pointplot"

    x = np.arange(-3, 3, 0.1)
    y2 = x**2
    y3 = x**3
    df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})

    arguments = dict(
        x="x",
        xticks=range(-3, 4),
        size=5,
        colormap=["#009933", "#ff3399"],
        title="Pointplot (Parabula vs. Cube)",
        marker="x",
        show_figure=False,
    )

    p_pointplot = df.plot_bokeh(kind="point", **arguments)
    p_pointplot_accessor = df.plot_bokeh.point(**arguments)

    p_pointplot_pandas_backend = df.plot(kind="point", **arguments)
    p_pointplot_accessor_pandas_backend = df.plot.point(**arguments)

    # Output plot as HTML:
    output = pandas_bokeh.row([p_pointplot, p_pointplot_accessor])
    with open(os.path.join(DIRECTORY, "Plots", "Pointplot.html"), "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
def test_scatterplot_2(df_iris):
    "Test 2 for scatterplot"

    # Change one value to clearly see the effect of the size keyword
    df_iris.loc[13, "sepal length (cm)"] = 15

    # Make scatterplot:
    # Create Scatterplot:
    arguments = dict(
        x="petal length (cm)",
        y="sepal width (cm)",
        category="species",
        title="Iris DataSet Visualization",
        size="sepal length (cm)",
        show_figure=False,
    )

    p_scatter = df_iris.plot_bokeh(kind="scatter", **arguments)
    p_scatter_accessor = df_iris.plot_bokeh.scatter(**arguments)

    p_scatter_pandas_backend = df_iris.plot(kind="scatter", **arguments)
    p_scatter_accessor_pandas_backend = df_iris.plot.scatter(**arguments)

    # Output plot as HTML:
    output = pandas_bokeh.row([p_scatter, p_scatter_accessor])
    with open(os.path.join(DIRECTORY, "Plots", "Scatterplot_2.html"),
              "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
def test_lineplot_with_points(df_stock):
    "Test for lineplot with data points:"

    # Create complex lineplot:
    arguments = dict(
        figsize=(600, 450),
        title="Apple vs Google",
        xlabel="Date",
        ylabel="Stock price [$]",
        yticks=[0, 100, 200, 300, 400],
        ylim=(100, 200),
        xlim=("2001-01-01", "2001-02-01"),
        colormap=["red", "blue"],
        plot_data_points=True,
        plot_data_points_size=10,
        marker="asterisk",
        show_figure=False,
    )
    p_lineplot_with_points = df_stock.plot_bokeh(kind="line", **arguments)
    p_lineplot_with_points_accessor = df_stock.plot_bokeh.line(**arguments)

    p_lineplot_with_points_pandas_backend = df_stock.plot(kind="line",
                                                          **arguments)
    p_lineplot_with_points_accessor_pandas_backend = df_stock.plot.line(
        **arguments)

    # Output plot as HTML:
    output = pandas_bokeh.row(
        [p_lineplot_with_points, p_lineplot_with_points_accessor])
    with open(os.path.join(DIRECTORY, "Plots", "Lineplot_with_points.html"),
              "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
Exemple #6
0
def test_lineplot_with_points():
    "Test for lineplot with data points:"

    # Create complex lineplot:
    np.random.seed(42)
    df = pd.DataFrame(
        {"Google": np.random.randn(1000) + 0.2, "Apple": np.random.randn(1000) + 0.17},
        index=pd.date_range("1/1/2000", periods=1000),
    )
    df.index.name = "Date"
    df = df.cumsum()
    df = df + 50
    arguments = dict(
        figsize=(600, 450),
        title="Apple vs Google",
        xlabel="Date",
        ylabel="Stock price [$]",
        yticks=[0, 100, 200, 300, 400],
        ylim=(100, 200),
        xlim=("2001-01-01", "2001-02-01"),
        colormap=["red", "blue"],
        plot_data_points=True,
        plot_data_points_size=10,
        marker="asterisk",
        show_figure=False,
    )
    p_lineplot_with_points = df.plot_bokeh(kind="line", **arguments)
    p_lineplot_with_points_accessor = df.plot_bokeh.line(**arguments)

    # Output plot as HTML:
    output = pandas_bokeh.row([p_lineplot_with_points, p_lineplot_with_points_accessor])
    with open(os.path.join(directory, "Plots", "Lineplot_with_points.html"), "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
def test_basic_lineplot(df_stock):
    """Test for basic lineplot"""

    # Create basic lineplot:
    p_basic_lineplot = df_stock.plot_bokeh(kind="line", show_figure=False)
    p_basic_lineplot_accessor = df_stock.plot_bokeh.line(show_figure=False)

    p_basic_lineplot_pandas_backend = df_stock.plot(
        kind="line",
        fontsize_title=30,
        fontsize_label=25,
        fontsize_ticks=15,
        fontsize_legend=40,
        show_figure=False,
    )
    p_basic_lineplot_accessor_pandas_backend = df_stock.plot.line(
        fontsize_title=30,
        fontsize_label=25,
        fontsize_ticks=15,
        fontsize_legend=40,
        show_figure=False,
    )

    # Output plot as HTML:
    output = pandas_bokeh.row([p_basic_lineplot, p_basic_lineplot_accessor])
    with open(os.path.join(DIRECTORY, "Plots", "Basic_lineplot.html"),
              "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
Exemple #8
0
def test_barplot_stacked():
    "Test for stacked Barplot"

    data = {
        "fruits": ["Apples", "Pears", "Nectarines", "Plums", "Grapes", "Strawberries"],
        "2015": [2, 1, 4, 3, 2, 4],
        "2016": [5, 3, 3, 2, 4, 6],
        "2017": [3, 2, 4, 4, 5, 3],
    }
    df = pd.DataFrame(data).set_index("fruits")

    # Make scatterplot:
    # Create Scatterplot:
    arguments = dict(
        ylabel="Price per Unit [€]",
        title="Fruit prices per Year",
        stacked=True,
        alpha=0.6,
        show_figure=False,
    )

    p_bar = df.plot_bokeh(kind="bar", **arguments)
    p_bar_accessor = df.plot_bokeh.bar(**arguments)

    # Output plot as HTML:
    output = pandas_bokeh.row([p_bar, p_bar_accessor])
    with open(os.path.join(directory, "Plots", "Barplot_stacked.html"), "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
def test_scatterplot_2():
    "Test 2 for scatterplot"

    # Load Iris Dataset:
    df = pd.read_csv(
        r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/Documentation/Testdata/iris/iris.csv"
    )

    #Change one value to clearly see the effect of the size keyword
    df.loc[13, "sepal length (cm)"] = 15

    #Make scatterplot:
    # Create Scatterplot:
    arguments = dict(
        x="petal length (cm)",
        y="sepal width (cm)",
        category="species",
        title="Iris DataSet Visualization",
        size="sepal length (cm)",
        show_figure=False,
    )

    p_scatter = df.plot_bokeh(kind="scatter", **arguments)
    p_scatter_accessor = df.plot_bokeh.scatter(**arguments)

    # Output plot as HTML:
    output = pandas_bokeh.row([p_scatter, p_scatter_accessor])
    with open(os.path.join(directory, "Plots", "Scatterplot_2.html"),
              "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
def test_complex_lineplot():
    """Test for complexd lineplot"""

    # Create complex lineplot:
    np.random.seed(42)
    df = pd.DataFrame(
        {
            "Google": np.random.randn(1000) + 0.2,
            "Apple": np.random.randn(1000) + 0.17
        },
        index=pd.date_range("1/1/2000", periods=1000),
    )
    df.index.name = "Date"
    df = df.cumsum()
    df = df + 50
    arguments = dict(
        figsize=(600, 450),
        y="Apple",
        title="Apple vs Google",
        xlabel="Date",
        ylabel="Stock price [$]",
        yticks=[0, 100, 200, 300, 400],
        ylim=(0, 400),
        toolbar_location=None,
        colormap=["red", "blue"],
        hovertool_string="""<img
                        src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Apple_logo_black.svg/170px-Apple_logo_black.svg.png" 
                        height="42" alt="@imgs" width="42"
                        style="float: left; margin: 0px 15px 15px 0px;"
                        border="2"></img> Apple 
                        
                        <h4> Stock Price: </h4> @{Apple}""",
        panning=False,
        zooming=False,
        show_figure=False,
    )
    p_complex_lineplot = df.plot_bokeh(kind="line", **arguments)
    p_complex_lineplot_accessor = df.plot_bokeh.line(**arguments)

    # Output plot as HTML:
    output = pandas_bokeh.row(
        [p_complex_lineplot, p_complex_lineplot_accessor])
    with open(os.path.join(directory, "Plots", "Complex_lineplot.html"),
              "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
def test_basic_stepplot(df_stock):
    """Test for basic stepplot"""

    p_basic_stepplot = df_stock.plot_bokeh(kind="step", show_figure=False)
    p_basic_stepplot_accessor = df_stock.plot_bokeh.step(show_figure=False)

    p_basic_stepplot_pandas_backend = df_stock.plot(kind="step",
                                                    show_figure=False)
    p_basic_stepplot_accessor_pandas_backend = df_stock.plot.step(
        show_figure=False)

    # Output plot as HTML:
    output = pandas_bokeh.row([p_basic_stepplot, p_basic_stepplot_accessor])
    with open(os.path.join(DIRECTORY, "Plots", "Basic_stepplot.html"),
              "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
Exemple #12
0
def test_complex_lineplot(df_stock):
    """Test for complexd lineplot"""

    # Create complex lineplot:
    arguments = dict(
        figsize=(600, 450),
        y="Apple",
        title="Apple vs Google",
        xlabel="Date",
        ylabel="Stock price [$]",
        yticks=[0, 100, 200, 300, 400],
        ylim=(0, 400),
        toolbar_location=None,
        colormap=["red", "blue"],
        hovertool_string="""<img
                        src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Apple_logo_black.svg/170px-Apple_logo_black.svg.png"
                        height="42" alt="@imgs" width="42"
                        style="float: left; margin: 0px 15px 15px 0px;"
                        border="2"></img> Apple

                        <h4> Stock Price: </h4> @{Apple}""",
        panning=False,
        zooming=False,
        show_figure=False,
    )
    p_complex_lineplot = df_stock.plot_bokeh(kind="line", **arguments)
    p_complex_lineplot_accessor = df_stock.plot_bokeh.line(**arguments)

    p_complex_lineplot_pandas_backend = df_stock.plot(kind="line", **arguments)
    p_complex_lineplot_accessor_pandas_backend = df_stock.plot.line(
        **arguments)

    # Output plot as HTML:
    output = pandas_bokeh.row([
        p_complex_lineplot,
        p_complex_lineplot_accessor,
        p_complex_lineplot_pandas_backend,
        p_complex_lineplot_accessor_pandas_backend,
    ])
    with open(os.path.join(DIRECTORY, "Plots", "Complex_lineplot.html"),
              "w") as f:
        f.write(pandas_bokeh.embedded_html(output))

    assert True
Exemple #13
0
def test_histogram(df_hist):
    "Test for histograms"

    # Top-on-Top Histogram (Default):
    p_tt = df_hist.plot_bokeh.hist(
        bins=np.linspace(-5, 5, 41),
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Top-on-Top)",
        line_color="black",
        show_figure=False,
    )

    # Side-by-Side Histogram (multiple bars share bin side-by-side) also accessible via
    # kind="hist":
    p_ss = df_hist.plot_bokeh(
        kind="hist",
        bins=np.linspace(-5, 5, 41),
        histogram_type="sidebyside",
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Side-by-Side)",
        line_color="black",
        show_figure=False,
    )

    # Stacked histogram:
    p_stack = df_hist.plot_bokeh.hist(
        bins=np.linspace(-5, 5, 41),
        histogram_type="stacked",
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Stacked)",
        line_color="black",
        show_figure=False,
    )

    # Top-on-Top Histogram (Default):
    p_tt_pandas_backend = df_hist.plot.hist(
        bins=np.linspace(-5, 5, 41),
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Top-on-Top)",
        line_color="black",
        show_figure=False,
    )

    # Side-by-Side Histogram (multiple bars share bin side-by-side) also accessible via
    # kind="hist":
    p_ss_pandas_backend = df_hist.plot(
        kind="hist",
        bins=np.linspace(-5, 5, 41),
        histogram_type="sidebyside",
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Side-by-Side)",
        line_color="black",
        show_figure=False,
    )

    # Stacked histogram:
    p_stack_pandas_backend = df_hist.plot.hist(
        bins=np.linspace(-5, 5, 41),
        histogram_type="stacked",
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Stacked)",
        line_color="black",
        show_figure=False,
    )

    layout = pandas_bokeh.column([
        pandas_bokeh.row(p_tt, p_tt_pandas_backend),
        pandas_bokeh.row(p_ss, p_ss_pandas_backend),
        pandas_bokeh.row(p_stack, p_stack_pandas_backend),
    ])
    pandas_bokeh.output_file(os.path.join(DIRECTORY, "Plots",
                                          "Histogram.html"))
    pandas_bokeh.save(layout)