def fetch_timeseries(providers: Dict[Callable[[Any], pd.DataFrame], List[str]],
                     start_date: str = None,
                     force_lower_case: bool = False,
                     multi_index: bool = None,
                     ffill: bool = False,
                     **kwargs):
    symbol_type = (List, Tuple, Set)
    expected_frames = sum(
        len(s) if isinstance(s, symbol_type) else 1
        for s in providers.values())
    df = None

    if multi_index is None and expected_frames > 1:
        multi_index = True

    for provider, symbols in providers.items():
        # make sure provider is an actual provider -> a callable
        if not callable(provider):
            provider = PROVIDER_MAP[provider]

        # make sure the symbols are iterable -> wrap single symbols into a list
        if not isinstance(symbols, symbol_type):
            symbols = [symbols]

        # fetch all symbols of all providers (later we could do this in parallel)
        for symbol in symbols:
            _df = call_callable_dynamic_args(provider,
                                             symbol,
                                             multi_index=multi_index,
                                             **kwargs)

            if _df is None:
                continue

            if multi_index:
                if not isinstance(_df.columns, pd.MultiIndex):
                    _df = add_multi_index(_df, symbol, True)

                if force_lower_case:
                    _df.columns = pd.MultiIndex.from_tuples([
                        (h.lower(), c.lower())
                        for h, c in _df.columns.to_list()
                    ])
            else:
                if isinstance(_df.columns, pd.MultiIndex):
                    _df.columns = [t[-1] for t in _df.columns.to_list()]

                if force_lower_case:
                    _df.columns = [c.lower() for c in _df.columns.to_list()]

            if df is None:
                df = _df
            else:
                df = inner_join(df,
                                _df,
                                force_multi_index=multi_index,
                                ffill=ffill)

    return df if start_date is None else df[start_date:]
Exemple #2
0
def fetch_yahoo(*args: str,
                period: str = 'max',
                multi_index: bool = False,
                **kwargs: str):
    df = None

    if len(args) == 1:
        df = __download_yahoo_data(args[0], period)
    else:
        # convert args to kwargs
        if len(args) > 0:
            kwargs = merge_kwargs({arg: arg for arg in args}, kwargs)

        for k, v in kwargs.items():
            px = f'{k}_'
            df_ = __download_yahoo_data(v, period)

            if multi_index:
                df_.columns = pd.MultiIndex.from_product([[k], df_.columns])

                if df is None:
                    df = df_
                else:
                    df = inner_join(df, df_)
            else:
                if df is None:
                    df = df_.add_prefix(px)
                else:
                    df = inner_join(df, df_, prefix=px)

    # print some statistics
    if df is None:
        logging.warning("nothing downloaded")
    else:
        logging.info(
            f'number of rows for joined dataframe = {len(df)}, from {df.index[0]} to {df.index[-1]}'
        )

    return df
Exemple #3
0
def ta_multi_ma(df: _t.PatchedDataFrame, average_function='sma', period=12, factors=_np.linspace(1 - 0.2, 1 + 0.2, 5)) -> _t.PatchedDataFrame:
    ma = {'sma': ta_sma, 'ema': ta_ema, 'wilder': ta_wilders}
    res = _pd.DataFrame({}, index=df.index)

    if df.ndim > 1:
        res = None
        for col in df.columns.to_list():
            _df = ta_multi_ma(df[col], average_function, period, factors)
            _df = add_multi_index(_df, col)
            res = inner_join(res, _df, force_multi_index=True)

        return res

    for x in factors:
        res[f"{df.name}_{average_function}({period})({x:.3f})"] = ma[average_function](df, period) * x

    return res