Exemple #1
0
def squeeze(high,
            low,
            close,
            bb_length=None,
            bb_std=None,
            kc_length=None,
            kc_scalar=None,
            mom_length=None,
            mom_smooth=None,
            use_tr=None,
            offset=None,
            **kwargs):
    """Indicator: Squeeze Momentum (SQZ)"""
    # Validate arguments
    high = verify_series(high)
    low = verify_series(low)
    close = verify_series(close)
    offset = get_offset(offset)

    bb_length = int(bb_length) if bb_length and bb_length > 0 else 20
    bb_std = float(bb_std) if bb_std and bb_std > 0 else 2.
    kc_length = int(kc_length) if kc_length and kc_length > 0 else 20
    kc_scalar = float(kc_scalar) if kc_scalar and kc_scalar > 0 else 1.5
    mom_length = int(mom_length) if mom_length and mom_length > 0 else 12
    mom_smooth = int(mom_smooth) if mom_smooth and mom_smooth > 0 else 6

    use_tr = kwargs.setdefault("tr", True)
    asint = kwargs.pop("asint", True)
    mamode = kwargs.pop("mamode", "sma").lower()
    lazybear = kwargs.pop("lazybear", False)
    detailed = kwargs.pop("detailed", False)

    def simplify_columns(df, n=3):
        df.columns = df.columns.str.lower()
        return [c.split('_')[0][n - 1:n] for c in df.columns]

    # Calculate Result
    bbd = bbands(close, length=bb_length, std=bb_std, mamode=mamode)
    kch = kc(high,
             low,
             close,
             length=kc_length,
             scalar=kc_scalar,
             mamode=mamode,
             tr=use_tr)

    # Simplify KC and BBAND column names for dynamic access
    bbd.columns = simplify_columns(bbd)
    kch.columns = simplify_columns(kch)

    if lazybear:
        highest_high = high.rolling(kc_length).max()
        lowest_low = low.rolling(kc_length).min()
        avg_ = 0.25 * (highest_high + lowest_low) + 0.5 * kch.b

        squeeze = linreg(close - avg_, length=kc_length)

    else:
        momo = mom(close, length=mom_length)
        if mamode == "ema":
            squeeze = ema(momo, length=mom_smooth)
        else:
            squeeze = sma(momo, length=mom_smooth)

    # Classify Squeezes
    squeeze_on = (bbd.l > kch.l) & (bbd.u < kch.u)
    squeeze_off = (bbd.l < kch.l) & (bbd.u > kch.u)
    no_squeeze = ~squeeze_on & ~squeeze_off

    # Offset
    if offset != 0:
        squeeze = squeeze.shift(offset)
        squeeze_on = squeeze_on.shift(offset)
        squeeze_off = squeeze_off.shift(offset)
        no_squeeze = no_squeeze.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        squeeze.fillna(kwargs["fillna"], inplace=True)
        squeeze_on.fillna(kwargs["fillna"], inplace=True)
        squeeze_off.fillna(kwargs["fillna"], inplace=True)
        no_squeeze.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        squeeze.fillna(method=kwargs["fill_method"], inplace=True)
        squeeze_on.fillna(method=kwargs["fill_method"], inplace=True)
        squeeze_off.fillna(method=kwargs["fill_method"], inplace=True)
        no_squeeze.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _props = "" if use_tr else "hlr"
    _props += f"_{bb_length}_{bb_std}_{kc_length}_{kc_scalar}"
    _props += "_LB" if lazybear else ""
    squeeze.name = f"SQZ{_props}"

    data = {
        squeeze.name: squeeze,
        f"SQZ_ON": squeeze_on.astype(int) if asint else squeeze_on,
        f"SQZ_OFF": squeeze_off.astype(int) if asint else squeeze_off,
        f"SQZ_NO": no_squeeze.astype(int) if asint else no_squeeze
    }
    df = DataFrame(data)
    df.name = squeeze.name
    df.category = squeeze.category = "momentum"

    # Detailed Squeeze Series
    if detailed:
        pos_squeeze = squeeze[squeeze >= 0]
        neg_squeeze = squeeze[squeeze < 0]

        pos_inc, pos_dec = unsigned_differences(pos_squeeze, asint=True)
        neg_inc, neg_dec = unsigned_differences(neg_squeeze, asint=True)

        pos_inc *= squeeze
        pos_dec *= squeeze
        neg_dec *= squeeze
        neg_inc *= squeeze

        pos_inc.replace(0, npNaN, inplace=True)
        pos_dec.replace(0, npNaN, inplace=True)
        neg_dec.replace(0, npNaN, inplace=True)
        neg_inc.replace(0, npNaN, inplace=True)

        sqz_inc = squeeze * increasing(squeeze)
        sqz_dec = squeeze * decreasing(squeeze)
        sqz_inc.replace(0, npNaN, inplace=True)
        sqz_dec.replace(0, npNaN, inplace=True)

        # Handle fills
        if "fillna" in kwargs:
            sqz_inc.fillna(kwargs["fillna"], inplace=True)
            sqz_dec.fillna(kwargs["fillna"], inplace=True)
            pos_inc.fillna(kwargs["fillna"], inplace=True)
            pos_dec.fillna(kwargs["fillna"], inplace=True)
            neg_dec.fillna(kwargs["fillna"], inplace=True)
            neg_inc.fillna(kwargs["fillna"], inplace=True)
        if "fill_method" in kwargs:
            sqz_inc.fillna(method=kwargs["fill_method"], inplace=True)
            sqz_dec.fillna(method=kwargs["fill_method"], inplace=True)
            pos_inc.fillna(method=kwargs["fill_method"], inplace=True)
            pos_dec.fillna(method=kwargs["fill_method"], inplace=True)
            neg_dec.fillna(method=kwargs["fill_method"], inplace=True)
            neg_inc.fillna(method=kwargs["fill_method"], inplace=True)

        df[f"SQZ_INC"] = sqz_inc
        df[f"SQZ_DEC"] = sqz_dec
        df[f"SQZ_PINC"] = pos_inc
        df[f"SQZ_PDEC"] = pos_dec
        df[f"SQZ_NDEC"] = neg_dec
        df[f"SQZ_NINC"] = neg_inc

    return df
Exemple #2
0
def squeeze_pro(high,
                low,
                close,
                bb_length=None,
                bb_std=None,
                kc_length=None,
                kc_scalar_wide=None,
                kc_scalar_normal=None,
                kc_scalar_narrow=None,
                mom_length=None,
                mom_smooth=None,
                use_tr=None,
                mamode=None,
                offset=None,
                **kwargs):
    """Indicator: Squeeze Momentum (SQZ) PRO"""
    # Validate arguments
    bb_length = int(bb_length) if bb_length and bb_length > 0 else 20
    bb_std = float(bb_std) if bb_std and bb_std > 0 else 2.0
    kc_length = int(kc_length) if kc_length and kc_length > 0 else 20
    kc_scalar_wide = float(
        kc_scalar_wide) if kc_scalar_wide and kc_scalar_wide > 0 else 2
    kc_scalar_normal = float(
        kc_scalar_normal) if kc_scalar_normal and kc_scalar_normal > 0 else 1.5
    kc_scalar_narrow = float(
        kc_scalar_narrow) if kc_scalar_narrow and kc_scalar_narrow > 0 else 1
    mom_length = int(mom_length) if mom_length and mom_length > 0 else 12
    mom_smooth = int(mom_smooth) if mom_smooth and mom_smooth > 0 else 6

    _length = max(bb_length, kc_length, mom_length, mom_smooth)
    high = verify_series(high, _length)
    low = verify_series(low, _length)
    close = verify_series(close, _length)
    offset = get_offset(offset)

    valid_kc_scaler = kc_scalar_wide > kc_scalar_normal and kc_scalar_normal > kc_scalar_narrow

    if not valid_kc_scaler: return
    if high is None or low is None or close is None: return

    use_tr = kwargs.setdefault("tr", True)
    asint = kwargs.pop("asint", True)
    detailed = kwargs.pop("detailed", False)
    mamode = mamode if isinstance(mamode, str) else "sma"

    def simplify_columns(df, n=3):
        df.columns = df.columns.str.lower()
        return [c.split("_")[0][n - 1:n] for c in df.columns]

    # Calculate Result
    bbd = bbands(close, length=bb_length, std=bb_std, mamode=mamode)
    kch_wide = kc(high,
                  low,
                  close,
                  length=kc_length,
                  scalar=kc_scalar_wide,
                  mamode=mamode,
                  tr=use_tr)
    kch_normal = kc(high,
                    low,
                    close,
                    length=kc_length,
                    scalar=kc_scalar_normal,
                    mamode=mamode,
                    tr=use_tr)
    kch_narrow = kc(high,
                    low,
                    close,
                    length=kc_length,
                    scalar=kc_scalar_narrow,
                    mamode=mamode,
                    tr=use_tr)

    # Simplify KC and BBAND column names for dynamic access
    bbd.columns = simplify_columns(bbd)
    kch_wide.columns = simplify_columns(kch_wide)
    kch_normal.columns = simplify_columns(kch_normal)
    kch_narrow.columns = simplify_columns(kch_narrow)

    momo = mom(close, length=mom_length)
    if mamode.lower() == "ema":
        squeeze = ema(momo, length=mom_smooth)
    else:  # "sma"
        squeeze = sma(momo, length=mom_smooth)

    # Classify Squeezes
    squeeze_on_wide = (bbd.l > kch_wide.l) & (bbd.u < kch_wide.u)
    squeeze_on_normal = (bbd.l > kch_normal.l) & (bbd.u < kch_normal.u)
    squeeze_on_narrow = (bbd.l > kch_narrow.l) & (bbd.u < kch_narrow.u)
    squeeze_off_wide = (bbd.l < kch_wide.l) & (bbd.u > kch_wide.u)
    no_squeeze = ~squeeze_on_wide & ~squeeze_off_wide

    # Offset
    if offset != 0:
        squeeze = squeeze.shift(offset)
        squeeze_on_wide = squeeze_on_wide.shift(offset)
        squeeze_on_normal = squeeze_on_normal.shift(offset)
        squeeze_on_narrow = squeeze_on_narrow.shift(offset)
        squeeze_off_wide = squeeze_off_wide.shift(offset)
        no_squeeze = no_squeeze.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        squeeze.fillna(kwargs["fillna"], inplace=True)
        squeeze_on_wide.fillna(kwargs["fillna"], inplace=True)
        squeeze_on_normal.fillna(kwargs["fillna"], inplace=True)
        squeeze_on_narrow.fillna(kwargs["fillna"], inplace=True)
        squeeze_off_wide.fillna(kwargs["fillna"], inplace=True)
        no_squeeze.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        squeeze.fillna(method=kwargs["fill_method"], inplace=True)
        squeeze_on_wide.fillna(method=kwargs["fill_method"], inplace=True)
        squeeze_on_normal.fillna(method=kwargs["fill_method"], inplace=True)
        squeeze_on_narrow.fillna(method=kwargs["fill_method"], inplace=True)
        squeeze_off_wide.fillna(method=kwargs["fill_method"], inplace=True)
        no_squeeze.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _props = "" if use_tr else "hlr"
    _props += f"_{bb_length}_{bb_std}_{kc_length}_{kc_scalar_wide}_{kc_scalar_normal}_{kc_scalar_narrow}"
    squeeze.name = f"SQZPRO{_props}"

    data = {
        squeeze.name: squeeze,
        f"SQZPRO_ON_WIDE":
        squeeze_on_wide.astype(int) if asint else squeeze_on_wide,
        f"SQZPRO_ON_NORMAL":
        squeeze_on_normal.astype(int) if asint else squeeze_on_normal,
        f"SQZPRO_ON_NARROW":
        squeeze_on_narrow.astype(int) if asint else squeeze_on_narrow,
        f"SQZPRO_OFF":
        squeeze_off_wide.astype(int) if asint else squeeze_off_wide,
        f"SQZPRO_NO": no_squeeze.astype(int) if asint else no_squeeze,
    }
    df = DataFrame(data)
    df.name = squeeze.name
    df.category = squeeze.category = "momentum"

    # Detailed Squeeze Series
    if detailed:
        pos_squeeze = squeeze[squeeze >= 0]
        neg_squeeze = squeeze[squeeze < 0]

        pos_inc, pos_dec = unsigned_differences(pos_squeeze, asint=True)
        neg_inc, neg_dec = unsigned_differences(neg_squeeze, asint=True)

        pos_inc *= squeeze
        pos_dec *= squeeze
        neg_dec *= squeeze
        neg_inc *= squeeze

        pos_inc.replace(0, npNaN, inplace=True)
        pos_dec.replace(0, npNaN, inplace=True)
        neg_dec.replace(0, npNaN, inplace=True)
        neg_inc.replace(0, npNaN, inplace=True)

        sqz_inc = squeeze * increasing(squeeze)
        sqz_dec = squeeze * decreasing(squeeze)
        sqz_inc.replace(0, npNaN, inplace=True)
        sqz_dec.replace(0, npNaN, inplace=True)

        # Handle fills
        if "fillna" in kwargs:
            sqz_inc.fillna(kwargs["fillna"], inplace=True)
            sqz_dec.fillna(kwargs["fillna"], inplace=True)
            pos_inc.fillna(kwargs["fillna"], inplace=True)
            pos_dec.fillna(kwargs["fillna"], inplace=True)
            neg_dec.fillna(kwargs["fillna"], inplace=True)
            neg_inc.fillna(kwargs["fillna"], inplace=True)
        if "fill_method" in kwargs:
            sqz_inc.fillna(method=kwargs["fill_method"], inplace=True)
            sqz_dec.fillna(method=kwargs["fill_method"], inplace=True)
            pos_inc.fillna(method=kwargs["fill_method"], inplace=True)
            pos_dec.fillna(method=kwargs["fill_method"], inplace=True)
            neg_dec.fillna(method=kwargs["fill_method"], inplace=True)
            neg_inc.fillna(method=kwargs["fill_method"], inplace=True)

        df[f"SQZPRO_INC"] = sqz_inc
        df[f"SQZPRO_DEC"] = sqz_dec
        df[f"SQZPRO_PINC"] = pos_inc
        df[f"SQZPRO_PDEC"] = pos_dec
        df[f"SQZPRO_NDEC"] = neg_dec
        df[f"SQZPRO_NINC"] = neg_inc

    return df