Exemple #1
0
 def equal_rebalancing(self):
     self.invest_amount_calculation()
     self.equal_df = pd.DataFrame()
     number_of_stocks = len(self.new_df.index)
     invest_amount_per_stock = self.invest_amount/number_of_stocks
     
     for i, price in enumerate(self.new_df['Current Price']):
         temp_series = pd.Series([invest_amount_per_stock/price], index=['Equal Rebalance'])
         temp_series = self.new_df.iloc[i].append(temp_series)
         self.equal_df = self.equal_df.append(temp_series, ignore_index=True)
     self.equal_df = self.equal_df[['Symbol', 'Description', 'Sector', 'Quantity', 'Equal Rebalance', 'Cost Basis Per Share', 'Market Cap', 'Current Price', 'P/E Ratio(PER)', 'P/B Ratio(PBR)']]
     # self.pt.clearData()
     self.pt = Table(self.display, dataframe=self.equal_df, showtoolbar=False, showstatusbar=False, editable=False, enable_menus=False)
     options = config.load_options()
     options = {'rowselectedcolor':None}
     config.apply_options(options, self.pt)
     self.pt.show()
     # Add color to indicate 'add' or 'sub' quantity to user. Green color for add. Red color for Sub.
     add_mask = self.equal_df['Quantity'] < self.equal_df['Equal Rebalance']
     self.pt.setColorByMask('Equal Rebalance', add_mask, '#7FFF00')
     sub_mask = self.equal_df['Quantity'] > self.equal_df['Equal Rebalance']
     self.pt.setColorByMask('Equal Rebalance', sub_mask, '#FF6EB4')
     
     # self.pt.redraw()
     self.pt.autoResizeColumns()
    def __init__(self, master, controller):
        tk.Frame.__init__(self, master, borderwidth=10, bg="#363636")

        self.table = pandastable.Table(self, dataframe=df, height=550, columns=4)
        self.table.grid()
        options = {'align': 'c',
                   'cellbackgr': '#303030',
                   'cellwidth': 200,
                   'colheadercolor': '#393939',
                   'entrybackgr': '#393939',
                   'floatprecision': 6,
                   'font': 'Consolas',
                   'fontsize': 12,
                   'grid_color': '#ABB1AD',
                   'linewidth': 1,
                   'rowheight': 22,
                   'rowselectedcolor': '#555555',
                   'textcolor': '#AAAAAA'
                   }
        config.apply_options(options, self.table)
        # self.table.autoResizeColumns()
        self.table.show()

        button_table_graph = tk.Button(self, text="Grafički prikaz", font=MED_FONT, bg="#363636", fg="#18d9cc",
                                       command=lambda: controller.show_frame(GraphPage))
        button_table_graph.grid(row=3, column=0, ipadx=10, ipady=5, padx=50, pady=20)

        button_table_convert = tk.Button(self, text="Konverter valuta", font=MED_FONT, bg="#363636", fg="#18d9cc",
                                         command=lambda: controller.show_frame(ConvertPage))
        button_table_convert.grid(row=3, column=3, ipadx=10, ipady=5, padx=50, pady=20)

        self.grid_rowconfigure(3, weight=1)

        self.listenerT = self.after(refresh_rate, self.update_after)
Exemple #3
0
def allYearsGDPPrediction(countries, predictionYear):
    df = pd.DataFrame(columns=[
        'Countries', 'GDP in 2015', 'Predicted GDP in ' + str(predictionYear)
    ])
    for i in countries:
        if dataframeCreation(i) is False:
            print(i + "'s dataframe is empty!")
            df = df.append(pd.Series([i, 'No Data To Make Prediction'],
                                     index=df.columns),
                           ignore_index=True)
        else:
            pred1 = linearReg2(i, 2015, dataframeCreation(i))[1][0][0]
            pred2 = linearReg2(i, predictionYear,
                               dataframeCreation(i))[1][0][0]
            df = df.append(pd.Series([i, pred1, pred2], index=df.columns),
                           ignore_index=True)
            df.index += 1
    window = tk.Toplevel()
    window.title("All Countries' GDP Prediction in the year: %s" %
                 predictionYear)
    f = Frame(window)
    f.pack(fill=BOTH, expand=1)
    pt = Table(f, dataframe=df, showstatusbar=True, width=200, height=300)
    options = {'cellwidth': 150, 'floatprecision': 4, 'align': 'center'}
    config.apply_options(options, pt)
    pt.showIndex()
    pt.show()
    return df
Exemple #4
0
 def __init__(self, master):
     super(DTable, self).__init__(master)
     self.mystyle = ttk.Style()
     self.mystyle.configure("Vertical.TScrollbar",
                            troughcolor='black',
                            background='black',
                            bordercolor="black")
     self.mystyle.configure("Horizontal.TScrollbar",
                            troughcolor='black',
                            background='black',
                            bordercolor="black")
     apply_options(options, self)
def displayCorrTable(dict, userSelection):
    corrDict = dict
    df = pd.DataFrame(data=corrDict, index=[0]).T
    df.columns = ['Correlation Value']
    window = tk.Toplevel()
    window.title('%s - GDP Factors correlation values' % userSelection)
    f = Frame(window)
    f.pack(fill=BOTH, expand=1)
    pt = Table(f, dataframe=df, showstatusbar=True, width=200, height=300)
    options = {'cellwidth': 150, 'floatprecision': 4, 'align': 'center'}
    config.apply_options(options, pt)
    pt.showIndex()
    pt.show()
Exemple #6
0
    def update_data(self):
        self.load_market_data()
        for i, symbol in enumerate(self.df['Symbol']):
            # Variable for display status of Progressive Bar
            self.p_var.set(100/len(self.df.index)*(i+1))
            self.progressbar.update()

            if symbol in self.tickers['Symbol'].values:
                # Loading live market data from yahoo finance
                data_from_yahoo = get_quote_data(symbol)
                # print(data_from_yahoo.keys())
                temp = pd.Series(
                    {'Symbol': symbol,
                    'Description': self.tickers.loc[self.tickers['Symbol'] == symbol]['Security'].item().strip(),
                    'Sector': self.tickers.loc[self.tickers['Symbol'] == symbol]['GICS Sector'].item().strip(),
                    'Cost Basis Per Share': self.df.loc[self.df['Symbol'] == symbol]['Cost Basis Per Share'].item().strip(),
                    'Quantity': self.df.loc[self.df['Symbol'] == symbol]['Quantity'].item(),
                    'Market Cap': data_from_yahoo['marketCap'],
                    'Current Price': data_from_yahoo['regularMarketPrice'],
                    'P/E Ratio(PER)': data_from_yahoo['trailingPE'] if 'trailingPE' in data_from_yahoo.keys() else None,
                    'P/B Ratio(PBR)': data_from_yahoo['priceToBook'] if 'priceToBook' in data_from_yahoo.keys() else None}
                    )
                self.new_df = self.new_df.append(temp, ignore_index=True)
        # print("Loading is completed")
        # Reorder Columns
        self.new_df = self.new_df[['Symbol', 'Description', 'Sector', 'Quantity', 'Cost Basis Per Share', 'Market Cap', 'Current Price', 'P/E Ratio(PER)', 'P/B Ratio(PBR)']]
        # first_column = self.new_df.pop('Symbol')
        # self.new_df.insert(0, 'Symbol', first_column)
        # self.pt.destroy()
        # self.pt.clearData()
        
        self.invested_temp_sum = 0
        for i in range(len(self.new_df)):
            self.invested_temp_sum += self.new_df['Quantity'][i] * self.new_df['Current Price'][i]
        self.invested_temp_sum = round(self.invested_temp_sum, 3) 
        self.invested_value.set(str(self.invested_temp_sum))
        self.pt = Table(self.display, dataframe=self.new_df, showtoolbar=False, showstatusbar=False, editable=False, enable_menus=False)
        options = config.load_options()
        options = {'rowselectedcolor':None}
        config.apply_options(options, self.pt)
        self.pt.show()
        self.pt.autoResizeColumns()
        # self.pt.redraw()
        
        # Update menu status
        self.menu.entryconfig("Strategies", state="normal") 
        # self.menu_file.entryconfig("Save to Excel", state="normal")
        self.button_rebalancing.config(state="normal")
Exemple #7
0
def displayFactor(country, dataframe, factor):
    countryName = country
    df = dataframe
    if df is False:
        tk.messagebox.showinfo("Error", "Insufficient data")
    else:
        dfFactor = df[factor]
        df = pd.concat([dfFactor], axis=1)
        window = tk.Toplevel()
        window.title(countryName + " - " + factor + ' Data')
        f = Frame(window)
        f.pack(fill=BOTH, expand=1)
        pt = Table(f, dataframe=df, showstatusbar=True, width=200, height=300)
        options = {'cellwidth': 150, 'floatprecision': 4, 'align': 'center'}
        config.apply_options(options, pt)
        pt.showIndex()
        pt.show()
Exemple #8
0
def display_all(user_input):
    """
    :param user_input: Fetch year value from user input
    Generate DataFrame based on factor value and plot accordingly
    """
    new_df = trim_column(df, user_input)
    new_df.drop(['Series Name', 'Series Code', 'Country Code'],
                axis=1,
                inplace=True)
    new_df.reset_index(drop=True, inplace=True)
    window = tk.Toplevel()
    window.title('GPD For All Countries In ' + user_input)
    window.geometry("500x700")
    f = Frame(window)
    f.pack(fill=BOTH, expand=1)
    pt = Table(f, dataframe=new_df, showstatusbar=True, width=200, height=300)
    options = {'cellwidth': 150, 'floatprecision': 4, 'align': 'center'}
    config.apply_options(options, pt)
    pt.showIndex()
    pt.show()
Exemple #9
0
 def load_user_data(self):
     _file = filedialog.askopenfilename(title="Choose csv file...",  \
         filetypes=(("csv", "*.csv"),("All", "*.*")), initialdir=r"C:\Users\baekh\OneDrive\Desktop\Python")
     try:
         self.df = pd.read_csv(_file, index_col=False)
         self.df = self.df.drop(columns=['Account Name/Number'])
         self.df = self.df.rename(columns={"Current Value":"Current Price"})
         # Keep only first row if there is duplications
         # self.df.drop_duplicates(subset=['Symbol'], inplace=True)
         # self.df = self.df.head()           
         self.pt = Table(self.display, dataframe=self.df, showtoolbar=False, showstatusbar=False, editable=False, enable_menus=False)
         options = config.load_options()
         options = {'rowselectedcolor':None}
         config.apply_options(options, self.pt)
         self.pt.show()
         self.pt.autoResizeColumns()
         # self.pt.redraw()
         # Update Menu status
         self.menu_file.entryconfig("Update Market Values", state="normal")
     except:
         pass
Exemple #10
0
 def market_cap_rebalancing(self):
     self.invest_amount_calculation()
     self.cap_df = pd.DataFrame()
     total_market_cap = self.new_df['Market Cap'].sum()
     for i, cap in enumerate(self.new_df['Market Cap']):
         temp_series = pd.Series([self.invest_amount*cap/total_market_cap/self.new_df['Current Price'][i]], index=['Cap Rebalance'])
         temp_series = self.new_df.iloc[i].append(temp_series)
         self.cap_df = self.cap_df.append(temp_series, ignore_index=True)
     self.cap_df = self.cap_df[['Symbol', 'Description', 'Sector', 'Quantity', 'Cap Rebalance', 'Cost Basis Per Share', 'Market Cap', 'Current Price', 'P/E Ratio(PER)', 'P/B Ratio(PBR)']]
     
     self.pt = Table(self.display, dataframe=self.cap_df, showtoolbar=False, showstatusbar=False, editable=False, enable_menus=False)
     options = config.load_options()
     options = {'rowselectedcolor':None}
     config.apply_options(options, self.pt)
     self.pt.show()
     # Add color to indicate 'add' or 'sub' quantity to user. Green color for add. Red color for Sub.
     add_mask = self.cap_df['Quantity'] < self.cap_df['Cap Rebalance']
     self.pt.setColorByMask('Cap Rebalance', add_mask, '#7FFF00')
     sub_mask = self.cap_df['Quantity'] > self.cap_df['Cap Rebalance']
     self.pt.setColorByMask('Cap Rebalance', sub_mask, '#FF6EB4')
     # print(total_market_cap)
     self.pt.autoResizeColumns()
Exemple #11
0
    def readData_createWindow(self):
        try:
            filename = filedialog.askopenfilename()
            f = open(filename, "rb")
            self.set_header(self.header_bool)
            # f = 'http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
            header = self.header_bool.get() == 1
            self.data = pd.read_csv(f, header=0 if header else None, sep=',')
            if not header:
                self.data.columns = [
                    'var' + str(i) for i in range(len(self.data.columns))
                ]
        except AttributeError:
            pass
        except Exception as e:
            return showerror("Error", "Data could not be loaded! Make sure the data is " \
                      + "formated in a similar way as the sample data: {}.".format(e))

        self.cols = self.data.columns
        self.setUpData()
        self.bools = [
        ]  # variables for columns: first axis: which col; second axis: what type

        height = min(5, self.data.shape[0])
        width = len(self.cols)

        # data frame
        data_frame = LabelFrame(self.master, text="Data Summary", relief=RIDGE)
        data_frame.grid(row=0,
                        column=0,
                        columnspan=5,
                        sticky="EWNS",
                        padx=15,
                        pady=7.5)
        data_size = "Data size is {} kilobytes. " \
            .format(np.round(self.data.memory_usage(deep=False).sum() / 1000, 2))
        cols_rows = "The number of columns is {} and the number of rows is {}. " \
            .format(self.data.shape[1], self.data.shape[0])
        miss_data = "The data does have missing values." if self.data.isnull().values.any() \
            else "The data does not have missing values."
        Message(data_frame, text=data_size + cols_rows + miss_data, width=335) \
            .grid(row=0, column=0, columnspan=width-1, rowspan=3, sticky='NW')
        Button(data_frame, text="Data", width=13, command=self.show_data) \
               .grid(row=0, column=4, columnspan=1, padx=4, pady=4)
        Button(data_frame, text="Description", width=13, command=self.show_description) \
               .grid(row=1, column=4, columnspan=1, padx=4, pady=0)
        Button(data_frame, text="Pair Plot", width=13, command=self.pair_plot) \
               .grid(row=2, column=4, columnspan=1, padx=4, pady=4)

        # head frame
        head_frame = LabelFrame(self.master, text="Head of data", relief=RIDGE)
        head_frame.grid(row=5,
                        column=0,
                        columnspan=5,
                        sticky="EWNS",
                        padx=15,
                        pady=7.5)

        for i in range(len(self.cols)):
            self.bools.append(
                self.initBools(5, trues=[0, 3] if i < width - 1 else [1, 3]))
        table = CustomTable(main_window=self,
                            parent=head_frame,
                            dataframe=self.data.head(),
                            editable=False,
                            width=1,
                            height=120)
        config.apply_options({'fontsize': 10}, table)
        table.show()

        # modeling frame
        model_frame = LabelFrame(self.master, text="Modeling", relief=RIDGE)
        model_frame.grid(row=height + 11,
                         column=0,
                         columnspan=5,
                         sticky="EWNS",
                         padx=15,
                         pady=7.5)

        # train / test ratio
        self.train_test_ratio = 1 / 3
        self.train_test_ratio_str = StringVar(
            self.master, value=str(np.round(self.train_test_ratio, 2)))
        Button(model_frame, text="Shuffle Data", width=13, command=self.shuffle_data) \
               .grid(row=0, column=0, columnspan=1)
        Button(model_frame, text="TrainTest Ratio", width=13, command=self.set_traintest) \
               .grid(row=0, column=2, columnspan=1)
        Label(model_frame, textvariable=self.train_test_ratio_str) \
               .grid(row=0, column=3, columnspan=1, sticky="E")

        # model selection
        ttk.Style().configure("TMenubutton", background="#E1E1E1")
        self.model_btn = Menubutton(model_frame, text="Model", width=9)
        self.set_model(self.model_btn)
        self.model_btn.grid(row=1, column=0, columnspan=1, padx=0, pady=4)
        Button(model_frame, text="Parameters", width=13, command=self.set_model_parameters) \
               .grid(row=1, column=1, columnspan=1, padx=0, pady=4)
        self.metric_btn = Menubutton(model_frame, text="Metric", width=9)
        self.set_metric(self.metric_btn)
        self.metric_btn.grid(row=1, column=2, columnspan=1, padx=0, pady=4)

        # model training
        self.score = -1
        self.score_str = StringVar(self.master, value="")
        Button(model_frame, text="Train Model", width=13, command=self.startModel) \
               .grid(row=1, column=3, columnspan=width-1)
        Label(model_frame, textvariable=self.score_str) \
               .grid(row=3, columnspan=width, sticky='W')

        # Export Frame
        export_frame = LabelFrame(self.master, text="Save", relief=RIDGE)
        export_frame.grid(row=height + 15,
                          column=0,
                          columnspan=5,
                          sticky="EWNS",
                          padx=15,
                          pady=7.5)
        Button(export_frame, text="Export Data", width=13, command=self.export_data) \
               .grid(row=0, column=0, columnspan=1, padx=4, pady=4)
        Button(export_frame, text="Export Model", width=13, command=self.export_model) \
               .grid(row=0, column=1, columnspan=1, padx=0, pady=4)